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Abstract

Malicious code often use a variety of anti-analysis and anti-
tampering defenses to hinder analysis. Researchers trying
to understand the internal logic of the malware have to
penetrate these defenses. Existing research on such anti-
analysis defenses tend to study them in isolation, thereby
failing to see underlying conceptual similarities between dif-
ferent kinds of anti-analysis defenses. This paper proposes
an information-flow-based framework that encompasses a
wide variety of anti-analysis defenses. We illustrate the
utility of our approach using two different instances of this
framework: self-checksumming-based anti-tampering defenses
and timing-based emulator detection. Our approach can
provide insights into the underlying structure of various anti-
analysis defenses and thereby help devise techniques for neu-
tralizing them.
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1. INTRODUCTION

Malicious binaries typically combine a variety of defenses
in order to avoid detection and hinder analysis. For exam-
ple, a program may use runtime unpacking to thwart static
analyses; anti-analysis defenses to thwart dynamic analy-
ses; code obfuscation to make it difficult to locate and un-
derstand these defenses; and anti-tampering checks to pre-
vent the defenses from being disabled even if they are lo-
cated [9,13,16,32,35,36]. An analyst wishing to understand
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the malware code has to first get past such defenses; this
task can be tedious and time-consuming. 1 This makes it
important and useful to develop frameworks that help us un-
derstand the overall structure of such anti-analysis defenses.

Numerous authors have investigated techniques for neu-
tralizing anti-analysis defenses [3, 10, 11, 18]. To the best
of our knowledge, these works all focus on specific kinds
of defenses, and do not identify or take advantage of un-
derlying conceptual similarities between different kinds of
anti-analysis defenses. However, identifying such concep-
tual similarities can be helpful for devising strategies for
neutralizing them. For example, Cappaert et al. [4] and
Wang et al. [41] discuss how checksum values can be used
as code unpacking keys in anti-tampering defenses; Lu and
Debray [24] discuss the use of timing information in anti-
analysis defenses in web-based malware that use emulation-
based obfuscation. While these may seem, superficially, to
be very different kinds of defenses, they share underlying
structural similarities; understanding these similarities can
be useful in adapting defenses from one to the other.

This paper describes a general information-flow-based frame-
work for such defenses and shows how several kinds of anti-
tamper and anti-analysis defenses can be seen as instances
of this framework. Such an approach can help improve our
understanding of such defenses and be useful for devising
methods for identifying and neutralizing them.

A key assumption we make is that of observability: namely,
that the attacker, i.e., the person or system attempting to
analyze a program, has complete access to the host and is
able to observe the program as it executes, including the
instructions executed and the values of registers and mem-
ory. This assumption is appropriate for most malware anal-
ysis scenarios, but does preclude some systems, like Con-
queror [26] that rely on an external entity (a remote host)
for some portions of the defense.

2. BACKGROUND
1In some cases, e.g., involving simple execution-time-based
defenses aimed at discovering whether the program is being
emulated, it may be possible to fool the defenses using an
untruthful clock. However, not all anti-analysis defenses are
amenable to such straightforward solutions.



2.1 Taint Analysis

Dynamic taint analysis, which finds a wide variety of uses
in software security applications, observes information flow
connecting sources and sinks based on an execution trace.
The predefined taint sources consist of input to an applica-
tion – whether it be from a user, network read, etc. Any
value within the trace whose calculation depends on data
acquired from a taint source is deemed tainted, and any
other value is deemed untainted. [34] points out that the
exact way the taint flows during a program execution, the
kinds of operations that initiate new taint, and the kinds
of checks that are performed on tainted values can vary per
specific implementation of taint analysis. The flow of input
to output values is known as forward tainting.

An analogous technique known as backward tainting ex-
ists in which the sinks are predefined – whether through
an output to a user, network write, etc. Rather than ob-
serve the program values that are dependent upon the taint
sources, backward tainting observes the values which the
sinks are dependent upon. [43] introduces a technique of
combining forward and backward tainting approaches in or-
der to eliminate program obfuscations and in turn simplify
an execution trace. Their approach utilizes different levels
of granularity during the taint in order to bypass devious
defenses such as those used in [37].

2.2 Non-Explicit Flow

However, a limitation of taint analysis is its code cov-
erage. Taint analysis uses assignment statements to prop-
agate explicit flows; however explicit assignments are not
the only way of disseminating information flow. [5] exam-
ines two kinds of non-explicit flow: control dependencies and
implicit flows. Control dependencies occur when a tainted
value flows to the conditional of an if-then-else statement
whose body contains an assignment.

Another form of non-explicit flow – implicit flow – arises
when the assignment within a tainted if-then-else condi-
tional is then used as the predicate for a later if conditional.
An example can be drawn from [5] where a piece of tainted
data y flows to w without explicit flows or control dependen-
cies:

x=0; z=0;
if(y=0) then x=1; else z=1; endif
if(x=0) then w=0; endif
if(z=0) then w=1; endif

If an instruction trace were to be taken of this snippet, the
implicit flow from y to w would not be mapped. In order
to be able to handle this kind of implicit flow, we should
consider control dependencies to propagate taint through
control transfers [17]. In the example above, the values of
x and z are control dependent on the value of y so there is
an implicit data dependency between values of x,z and y.
Similarly, there is an implicit dependency between x and w

in the second if; and between z and w in the third if. So
the variables y and w are dependent transitively.

As evident, there are caveats to different kinds of dynamic
analysis – specifically, taint analysis. This paper presents a
more general approach involving information flow with taint
analysis.

3. UNDERSTANDING ANTI-ANALYSIS DE-

FENSES

3.1 A Framework for Anti-Analysis Defenses

Broadly speaking, anti-tampering and anti-analysis de-
fenses involve making one or more observations about some
aspect of the program or its execution environment and us-
ing these observations to determine whether the program is
executing in a “friendly” environment or a “hostile” environ-
ment; depending on the outcome of this check, the program
may then continue executing normally if the environment is
deemed to be friendly, and take some appropriate evasive
action if the execution environment is deemed to be hostile.
Furthermore, while the various computations involved may
be implemented and/or obfuscated in different ways, it must
necessarily be the case that there is a flow of information
from the observations to the code that checks the observed
values. This structure forms the basis of our framework for
anti-tamper/anti-analysis defenses, which has the following
general structure:

1. Observation. Observe some aspect of the program
and/or its execution environment.

2. Validation. Check whether the observed value indi-
cates a benign execution environment.

3. Response. If the environment is deemed to be benign,
continue with normal execution; otherwise, invoke an
appropriate response.

4. Information Flow. There is a flow of information
from the Observation to the Validation to the Re-
sponse steps.

While the specifics of the code can vary depending on the
kind of observations being made, the way in which the obser-
vations are validated and the manner in which any necessary
response action is invoked, this general structure seems to
describe a wide variety of defenses. For example:

• In code anti-tampering defenses based on self-checksumming,
the observation consists of computing a checksum of
(some portion of) the program’s code [4,6,15,39]. Val-
idation can take many forms, including simple com-
parisons against some expected checksum value and
checksum-based code unpacking schemes where the check-
sum computed is used as a key for unpacking subse-
quently executed code (i.e., any tampering causes sub-
sequent code to be decrypted with an incorrect key and
thereby results in garbage code being executed) [4,39].
The connections between the observation, validation,
and response code can be made stealthy to make the
defenses harder to identify [38].



• In timing-based anti-emulation checks, the value ob-
served is the time taken to execute some piece of code.
Validation involves checking whether the execution speed
so determined is above some threshold. Options for
implementing responses are similar to those for check-
summing.

• In targeted malware, the observation may focus on
highly specific characteristics of the intended target.
For example, the Stuxnet worm checked for the pres-
ence of specific hardware from Siemens [22]. Some
kinds of espionage malware will first check a victim
computer’s IP address and only distribute secondary
malware to the victim if it belongs to a particular set
of targeted IP addresses [19]; otherwise, it distributes
benign content.

As the examples above show, the various components of the
anti-analysis defense framework can be implemented in a
number of different ways. Nevertheless, the key notion un-
derlying our approach is that there is a flow of information
from an observation (either of the program or of its environ-
ment) to some code that uses the result of the observation
(Validation) to control the subsequent behavior of the pro-
gram (Response). This flow of information may not always
be obvious, e.g., it may be stealthy and widely separated
in te program [38], or may use implicit flows for conceal-
ment [5]. However, some such information flow is essential
for the defense to work.

It should be noted that this kind of information flow is
by no means unique to anti-analysis defenses: there are
many computations where environmental factors influence
the computational behavior of the program. Nevertheless,
understanding this conceptual structure of anti-analysis de-
fenses and the role of information flow, and developing and
using tools that can help track such information flow, can
be helpful in identifying and understanding anti-analysis de-
fenses in programs. For example, a security analyst who
suspects that a program under analysis may be using anti-
analysis defenses to conceal some of its functionality may be
able to use such information flows to discover the defenses
being used and possible countermeasures to such defenses.

3.2 Self-Checksumming-based Anti-Tamper De-
fenses

Code self-checksumming is commonly used as an anti-
tampering defense [4,6,14,15]. The idea is to have the pro-
gram compute a hash value over its code and use this value in
the subsequent computation in such a way that the program
executes normally if and only if the hash value computed is
as expected. The observation step is thus the computation
of the checksum, which may be computed either on the code
that is actually executed or on memory locations containing
a packed version the code. The validation and response steps
can be carried out in several different ways. For example,
the program can branch to the response code, using either
a straightforward compare-and-conditional-branch logic or
using the checksum value to compute the target address of
an indirect jump instruction [38]. Alternatively, the check-
sum value can be used as the decryption key for runtime-
unpacked code [4,41], such that an incorrect checksum value
results in incorrect unpacking results and therefore incorrect

program execution. As the second alternative illustrates, the
validation step of a defense need not involve an explicit com-
parison against some expected value; rather, it can simply
be a computation that produces correct output if and only if
the observation produces the observed value. Lu and Debray
use a similar approach in a construct called “implicit con-
ditionals” that branch to the correct targets only if certain
environmental observations yield expected values [24].

Since malware often use runtime code unpacking, we do
not rely on static analysis which is unable to examine dy-
namically created code; instead, we use dynamic analysis.
Our approach consists of the following steps:

1. Backward taint analysis. Starting from code ad-
dresses, i.e., addresses of executed memory locations,
this step propagates taint in a backward direction, i.e.,
from uses to definitions, to identify memory locations
that are used to create code.

2. Forward taint analysis. This step identifies the flow
of values computed from locations that are tainted in
the backward taint analysis step (i.e., which either con-
tain executed instructions or are used to create instruc-
tions to executed instructions) to code that affects the
program’s execution. This is done by starting from
the locations tainted in the backward taint analysis
step and then propagating taint forwards (i.e., from
definitions to uses).

3. Checksumming detection. This step identifies the
validation step, i.e. where the code is performing check-
sum verification. Instructions I can be identified as
performing checksum verification having one of the fol-
lowing effects:

(a) affecting control flow of execution depending on
a tainted value; or

(b) writing a tainted value to a location that is going
to be executed later; or

(c) uses a tainted value to pass it as an argument to
an output system call.

The combination of backward and forward taint computa-
tion is necessary because it is possible to set up the checksum
computation so that it considers, not the locations that are
actually executed, but locations from which the instructions
at those executed locations were created. For example, a
piece of sensitive code—say, a license check or anti-analysis
defense—may be stored in encrypted form in a memory re-
gion R, and decrypted as needed into some other memory
region S from which it is executed; meanwhile the check-
sum computation can be applied to the memory region R,
which is not itself executed. The backward taint analysis
starts with the executed code in S, goes backward to taint
R, then propagate this taint forward to the instruction(s)
that perform checksum verification.

Once the checksum verification instruction(s) have been
identified, the taint information gathered from the forward
taint propagation step can be used, possibly in conjunction
with some additional analysis of the execution trace, to ex-
tract a variety of information about the self-checksumming
protections deployed by the program under study. This in-
formation can be useful in guiding efforts to defeat or bypass



the program’s self-checksumming anti-tamper defenses. The
remainder of this section briefly describes some information
that can be obtained in this way.

I. Checksum Computation.

The forward taint step identifies all code section which ac-
cess executed locations, but these are not necessarily check-
sum computations routines as the program might be do-
ing run-time unpacking. In order to obtain checksum com-
putation routines, we can perform a backward slice [21]
starting from checksum verification instructions. This needs
to be done carefully since the slicing algorithm should be
done with respect to unstructured nature of the executable
code [20]. Second, the control flow graph of the program
should be constructed using the execution trace and the
portions of the code that were executed. Since it is pos-
sible for an executed memory location to contain different
byte codes throughout a program’s execution via dynamic
unpacking, another parameter in addition to its address is
necessary to uniquely identify an instruction. However, it
is possible for different checksum computations to use the
same verification code; thus a slice is computed whenever a
verifier is observed. Although it might not be practical to
share a verifier in this way from a security standpoint, mul-
tiple checksumming instances can be detected even if they
share a verifier. Even if different checksums are computed
concurrently and interleaved, e.g. using multiple threads,
our technique can identify each one (this involves using the
thread-id to keep track of the instructions in the different
threads when collecting the trace).

We can also use the dynamic slice to determine where
the checksum computation code originated. For example, if
the memory locations corresponding to the checksumming
code were written to before the checksum was computed, it
means that the checksumming code was the result of runtime
unpacking. Further, if the locations where the unpacked
values originated were derived from an external source (e.g.,
via a socket read), it means that the checksumming code
was obtained from an external source (e.g., as in Conqueror
[26]). Similarly, if the checksum computed by the program
is written out, e.g., via a network write, it suggests that the
validation step may be being performed by a remote agent.
Thus, the flow of taint into or out of the program can be
used to identify violations of the observability assumption
mentioned in Section 1.

II. Checksum Verification.

One way by which an attacker can try to defeat self-
checksumming is to change the validation code to transfer
control unconditionally to the “normal execution” code. It
turns out that this simple attack may not always work, and
we can determine whether it will work from examining the
flow of tainted and untainted values into the validation code.
The following is a list of conditions under which this simple
attack will fail:

1. If the validation code is invoked with tainted inputs at
some points and with untainted inputs at others.

2. If a backward-tainted location has a forward-tainted
value written into it (indicating that the checksum is

used as an unpacking key), or passed to an output
operation in the program as an argument.

The first situation arises in emulation-obfuscated code (e.g.,
we observed it in code protected using Themida [30]), where
the program logic is embedded into the byte-code of a cus-
tom virtual machine and program executable is simply the
emulator for this virtual machine. Each different operation
of the virtual machine has a different handler in the emula-
tor, e.g.:

handle_if_EQ: /* if_EQ op1, op2, target */
op1 = fetch_op1();
op2 = fetch_op2();
target = fetch_op3();
if (op1 == op2) {

ip = target;
}
else {

ip++;
}
goto emulator_dispatch;

This code fragment will be executed whenever an ‘if_EQ’
operation is encountered in the byte code, including for ex-
ample the checksum validation code; in some of these uses
the handler code will have tainted operands; in other cases
the operands will be untainted. Modifying this code to al-
ways branch to some fixed location will therefore alter the
behavior of all such conditional branches in the byte code
and therefore result in an incorrect computation.

3.3 Timing-Based Anti-Analysis Defenses

Timing defenses are used to detect whether a program’s
execution is being monitored via dynamic analysis. The as-
sumption is that code being monitored runs much slower due
to the overhead arising from the dynamic monitoring. The
idea behind a timing defense is to measure the time taken
to execute a (small) piece of code and then check whether
the execution time is within a range of execution times on a
friendly environment. A hostile environment usually has a
high overhead because of the analysis tools trying to observe
and record the running program’s behavior. This overhead
is often high enough to make the execution time out of the
range for a friendly environment and thus can be detected;
the program can avoid normal execution by observing this
abnormal environment.

One solution for getting around timing defenses is by hav-
ing the underlying operating system return fake time values
so as to give the program the illusion that it is running on
a friendly machine. This modification can happen in the
hardware or the operating system, such as redirecting sys-
tem calls – which are not trivial to implement. However, it
will not defeat timing defenses which receive the values from
an outside source, such as a network time server.

Our approach to identify timing based defenses is gen-
eral in a sense that it can be done either statically and/or
dynamically. Static analysis has already shown to be inef-
fective against run-time unpacking and/or polymorphic or
metamorphic techniques [28] commonly used in malicious
code, but unless the program being analyzed incorporates a
defense to thwart the static analysis (e.g. by using meta-



t0 = clock();
// execute some code

t1 = clock();
...

if (t1 - t0 > threshold){

response();

}

// continue normal execution

Figure 1: An example of timing anti-analysis defense

morphism or run-time unpacking), it can be statically ana-
lyzed using our technique. Our approach uses a combination
of taint analysis and control dependence analysis which can
either be done statically or dynamically. In a case where
dynamic analysis is more suitable, we need to first collect
a trace of the program by watching the execution of the
program and then performing dynamic taint analysis on the
trace. Afterwards a control flow graph can be generated
from the trace, which is then used to extract control depen-
dencies. There is a great deal of research on these topics
from both dynamic and static perspectives [29,31,34].

The goal is to identify whether a program uses time values
so that these observations can somehow impact the control
flow of the program. Intuitively, using taint analysis will be
able to identify the flow of input time values and whether
they affect a control transfer in the program or not, simply
by observing if a conditional and/or indirect control trans-
fer is based on a tainted value. This can be effective against
simple time defenses where the time values collected by the
program flow directly to any control transfer instruction.
However, there are cases where the observed value does not
directly affect the control flow and the effect is implicit. We
can use control dependency analysis to identify implicit data
flow through control transfers, thus addressing this limita-
tion.

The code sample in Figure 1 shows an example of timing
defense used for anti-analysis purposes. The program ob-
serves the execution time of a piece of code where the code
is expected to take no longer than threshold to execute,
otherwise the environment is not normal as expected and so
the program will abort the normal execution. The execution
time is then validated by being compared with the expected
value, threshold. If it is smaller than the expected value
then it continues the normal execution; otherwise it elicits
an appropriate response. This is the case where there is a
direct dependency between observed values and the control
transfers of the program.

Taint analysis consists of the following steps:

(i) Introducing Taint: The first step for taint analysis is
introducing or identifying taint sources, which in our
case is the time values collected by the program in
the execution. There are many ways a program can
collect such time values, either through executing the
RDTSC instruction which returns the processor time, or
through different system calls provided by the oper-
ating system. For example, Windows has a variety of
system calls which return a time value such as GetSys-
temTime, GetTickCount, timeGetTime which all have

different outputs for different uses. Such calls read
from specific locations in the system’s memory in or-
der to collect a time value to output; these memory
locations would be read by any invocation – either in-
lined or otherwise. Often the protected program only
wants to calculate the execution time spent between
two different points in the program, so which method
used is not so important. That being said, all these
sources then become a potential source for a time de-
fense. As opposed to checksum detection where an
execution trace is needed to find the taint sources, we
know the taint sources for timing-based anti-analysis
defenses without preprocessing which makes it even
more general.

(ii) Taint Propagation: After taint sources are identified,
we need to propagate taint through the program ex-
ecution. This step will identify program statements
which affect the tainted values and/or are affected by
these values. Meaning if a statement in the program
uses some tainted value, the values that the statement
modifies or affects will be tainted as well. We are in-
terested in finding control transfers which are affected
by time values. This step will identify those control
transfers which taint directly flows into, and will thus
be considered as candidates for timing-defense anti-
analysis techniques.

The code example in Figure 1 shows a simple case where
the time values are directly used for the validation step. In
this case, simply doing the taint propagation on the values
returned by the clock() function will identify the control
transfer used for validation. However, a more complex case
is when the time values are not used directly and the effect is
implicit through control transfers, for example when the exe-
cution of a statement depends on the evaluation of a tainted
value through an if statement (see Section 2). Identify-
ing control dependencies straightforward using control flow
graphs (CFG) and dominance information when the pro-
gram has a structured CFG. However, for obfuscated code
where the structure of the CFG is obstructed, e.g. by using
CFG flattening or virtualization techniques, getting control
dependencies may become tricky and we are still working to
find a solution to handle unstructured CFGs.

Figure 2 shows a code example that can not be detected
by only using taint propagation. In the code example, the
while loop at line 4 is executed until there are at least 10
pairs of calls to clock() which return different time values.
The number of calls to clock() is also recorded and com-
pared to 10. If the number of calls is less than 10 – meaning
that no pair of consecutive calls to clock() returned the
same time value – then the environment is too slow and the
program refuses to execute normally. The difference between
this and the previous example is that there is no direct data
flow between observation and validation parts. In order to
handle this we need to incorporate implicit flow. We still
need to propagate taint from calls to clock() function. The
first implicit flow is at line 7 where the execution of c++ de-
pends on a tainted value. By marking variable c as tainted,
it makes the evaluation of the while loop dependent on a
tainted value, so the taint implicitly flows to the num_calls
variable. The latter will cause the control flow at line i to
become tainted.



1 num_calls = 1;

2 c = 0;

3 t0 = clock();

4 while (c < 0xa){

5 tnew = clock();

5 num_calls ++;

6 if (t0 != t1){

7 c++;

8 }

9 }

...

i if (num_calls <= 0xa){

i+1 response();

i+2 }

// continue normal execution

Figure 2: An example of timing anti-analysis defense
through implicit flow

4. EVALUATION

We have developed a prototype tool using C++. Instruc-
tion traces are obtained by an Intel Pin tool [25]. The evalu-
ation is performed on a 2.67GHz Intel Xeon E5640 processor
with 96 GB of main memory running Ubuntu 12.04.

4.1 Setup

We evaluate our tool using two sets of programs. All these
programs compute MD5 for a simple string.

The first set consists of programs with three kinds of
checksumming protection and a program with time defense.

The three kinds of checksumming protection are multi-
ple self-checksumming guards [6,15] (labeled as 50-guards),
using a checksum as a code decryption key [4, 41] (labeled
as decrypt-key) and using a checksum to generate a MD5
initialization constant (labeled as chksum-md5).

The time defense program fetches time by using system
API timeGetTime(), GetSystemTimeAsFileTime(), GetTick-
Count(), and instruction rdtsc. It checks the difference
value of two fetched time values to determine whether it has
been traced and exits immediately when it found it has been
traced. This program is labeled as time-md5.

For checksumming programs, we instrument them to re-
port each address range that was checksummed each time
a checksum is computed. This is then compared with the
results reported by our tool. For time defense program, we
verify the result with a debugger loading debug information
generated by the compiler.

The second binary set consists of the MD5 computation
program packed by Themida 1.8.5.5 and Obsidium 1.3.6.4.
We only report the result of time defense in this group be-
cause we have not enough time to verify the result of check-
summing detection.

4.2 Result and Discussion

The result of the evaluation is given in Table 1. The num-

ber of taint source of the two sets are the number of memory
locations obtained by backward taint analysis and the num-
ber of calls for fetching time values, respectively.

For the program “50-guards”, all guards and code they
guarded are identified by our tool as expected. For the pro-
gram “decrypt-key”, following code is reported.

CODE[0] ^= checksum
CODE[1] ^= checksum
...
...

For the program “chksum-md5”, the following code is de-
tected as an anti-analysis response by our tool. The number
0x67452301 is a constant initial value of MD5 algorithm.

// This value should be 0x67452301;
mdContext ->buf [0] = chksum + 0x6740E9CB ;

For the program “time-md5”, all conditional jumps that
jump to anti-analysis response are reported. The code of
this program is similar to the code in Fig. 1.

Although no false negative is found in the three programs,
some guards may not be identified by our approach. For a
specific input, not all the protected code is executed, so do
the guards. If a guard is not executed, our approach can not
identify it.

Results of first binary set indicate that our approach can
identify code checksumming and time defense precisely no
matter how complex of the relation between taint source
and an anti-analysis response. Although no false positive is
found, this does not mean our approach will find no false
positive in other programs. It is somehow acceptable be-
cause in some cases, it is hard to distinguish the usage of
taint source from anti-analysis response. For example, the
time values can be used for benchmarking.

In the second binary set, time defense is only found in
the program packed by Themida. In the tracing Themida
with Intel Pin tool, the program pops up a message box
and exits after closing the message box. When we hack
the system API calls timeGetTime() reported by our tool,
the program runs normally and outputs the same result as
the running without tracing. The hacking is performed by
a special debugger as there are anti-debugging techniques
used in Themida. This indicates that our approach success-
fully identifies the time defense in the program packed by
Themida.

The work load of our approach roughly equals to the
number of instructions processed which approximates to the
number of instructions in a trace times the number of taint
source. No taint source is found in Obsidium, so its analysis
time is the time used for walking instructions in the trace. In
Themida, the program exits early as it detected the tracing.
Thus, the number of instructions listed in Table 4 is smaller
than that of a normal execution. But the activities of time
defense is already recorded in the trace before exiting. So
the time defense in a trace can be identified by our tool if
the code of the time defense is executed.

The analysis times are all acceptable. It indicates that
our approach is practical in dealing real world binaries.



Table 1: Evaluation Result
Program Trace Size No. of No. of Guards Analysis Time

Mbytes Instructions Taint Source Found Ground Truth (sec)

50-guards 823 2,702,679 4,855 50 50 95
decrypt-key 50 165,867 2,352 1 1 8
chksum-md5 88 296,138 2,353 1 1 4

time-md5 67 226,855 8 4 4 5

Obsidium 6,230 27,461,928 0 0 Unknown 347
Themida 2,690 9,304,222 232 2 Unknown 223

5. DISCUSSION

There are several limitations in our approach.

First, the input of our approach is a dynamic analysis ap-
proach where the low code coverage is the major limitation.
There many other technologies can improve the code cover-
age, such as multiple path exploration [27] and generating
inputs by symbolic execution [7].

Second, it may be not applicable to obtain instruction
traces for some programs. For example, a program may need
long time initialization or its program logic is very complex.
That makes the instruction trace in huge file size. Programs
that run in high privilege could also make a tracing tool fails
to work.

Third, tracing could be detected by the target program
without any time defense. For example, binary instrumen-
tation based tracing tools can be detected at runtime with
various tricks [12].

Trace files of modern programs are often in large file size.
It is not an easy work for processing large trace files. The
work load of our approach depends on the number of in-
structions in a trace file. There are two feasible approaches
will improve the performance of our approach. The first one
is only recording relevant instructions in a trace file. For ex-
ample, it is no need to analyze instructions executed before
the entry point of the target program. The second one is
using parallel processing to share the work load to multiple
processors.

6. RELATED WORK

There is a considerable body of literature on both anti-
analysis/anti-tampering defenses in software as well as on
the detection and neutralization of such defenses. In the
interests of brevity we focus here only on the related work
on defeating such defenses.

The only other work we know of that looks at attacks on
self-checksumming code is that of Wurster et al. [40, 42],
who exploit an assumption underlying self-checksumming
approaches that the same byte values will be retrieved from
a virtual memory address range regardless of whether it is
retrieved as code or data. They show that a adversary hard-
ware assisted techniques to violate this assumption and by-
pass the self-checksumming defense. Giffin et al. show that
self-modifying code can be used to detect this attack [14].
Unlike Wurster et al.’s attack, the work we describe is a
pure-software approach that does not rely on hardware as-
sistance.

A number of researchers have investigated the problem of
detecting environmentally-dependent behavior in malware.
Brumley et al. [2] use a combination of dynamic binary in-
strumentation and mixed symbolic and concrete execution,
to identify behavior that is dependent on environmental trig-
gers. Crandall et al. use a combination of VM-based timer
perturbation and symbolic execution to discover time bombs
in malware [8]. Lindorfer et al. [23] and Balzarotti et al. [1]
discuss detecting environment-dependent behavior in native
malware by comparing multiple executions in different envi-
ronments.

There is a wide body of literature on various forms of
taint analysis and their applications to software analysis,
e.g., see [34]. Cavallarro et al. [5] and Sarwar et al. [33]
discuss approaches for defeating taint analyses, e.g., using
implicit information flows.

7. CONCLUSION

Malicious programs often use a variety of anti-analyses
defenses to make it harder to analyze their code. Previ-
ous work on detecting and neutralizing such defenses has
typically focused on specific kinds of defenses, without at-
tention to underlying similarities between different kinds of
anti-analysis defenses. This paper describes an information-
flow-based framework for understanding a wide variety of
anti-analysis defenses, and shows how self-checksumming-
based anti-tampering defenses as well as timing-based anti-
emulation defenses can be understood as instances of this
framework. Experimental results from an initial prototype
implementation of our approach shows that taint-based (and,
more generally,information-flow-based) dynamic analysis can
be effective in identifying and understanding such defenses.
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