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mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization, 
programs typically copy 
strings around verbatim.

Many types of syscalls 
offer many primitives to 
an attacker.
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It builds hundreds of exploits against 
popular web servers.

We call upon researchers and vendors 
to rethink mitigation strategies.

We present Einstein, a data-only attack
generator.


