
Practical Data-Only
Attack Generation

Brian Johannesmeyer, Asia Slowinska,
Herbert Bos, Cristiano Giuffrida

1

2

2

Data-only attacks!

2

Data-only attacks!

2

Data-only attacks!

2

Data-only attacks!

2

Builds hundreds of exploits against
popular web servers

Data-only attacks!

2

Builds hundreds of exploits against
popular web servers

Calls upon researchers and vendors
to rethink mitigation strategies

Data-only attacks!

2

Victim server
Data

Execution

What is a data-only attack?

3

func_ptr: &foo
...

Victim server
Data

Execution

What is a data-only attack?

3

func_ptr: &foo
...

Victim server
Data

Execution

What is a data-only attack?

3

func_ptr: &foo
...

Control-flow
hijacking attack!

Victim server
Data

Execution

What is a data-only attack?

3

func_ptr: &foo
... &wrong_code

Control-flow
hijacking attack!

Victim server
Data

Execution

What is a data-only attack?

3

func_ptr: &foo
... &wrong_code

Control-flow
hijacking attack!

Victim server
Data

Execution

What is a data-only attack?

4

func_ptr: &foo
... &wrong_code

Control-flow
hijacking attack!

wrong_code();

Victim server
Data

Execution

What is a data-only attack?

4

func_ptr: &foo
... &wrong_code

Control-flow
hijacking attack!

wrong_code();

Victim server
Data

Execution

What is a data-only attack?

4

func_ptr: &foo
... &wrong_code

Control-flow
hijacking attack!

wrong_code();

Victim server
Data

Execution

What is a data-only attack?

4

func_ptr: &foo
... &wrong_code

Control-flow
hijacking attack!

wrong_code();

Victim server
Data

Execution

What is a data-only attack?

5

func_ptr: &foo
...

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Run “/sort-script”
with the input “2 1 3”

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

execute(file=“/usr/cgi-bin/sort-script”,
stdin=“2 1 3”);

Run “/sort-script”
with the input “2 1 3”

Victim server
Data

Execution

What is a data-only attack?

6

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

execute(file=“/usr/cgi-bin/sort-script”,
stdin=“2 1 3”);

Run “/sort-script”
with the input “2 1 3”

The answer is “1 2 3”

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
...

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
...

Data-only
attack!

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
... “/bin”

Data-only
attack!

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
... “/bin”

Data-only
attack!

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Run “/sh” with the input “touch
/tmp/attacker-was-here”

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
... “/bin”

Data-only
attack!

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

Run “/sh” with the input “touch
/tmp/attacker-was-here”

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
... “/bin”

Data-only
attack!

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

execute(file=“/bin/sh”,
stdin=“touch /tmp/attacker-was-here”);

Run “/sh” with the input “touch
/tmp/attacker-was-here”

Victim server
Data

Execution

What is a data-only attack?

7

cgi_bin: “/usr/cgi-bin”
... “/bin”

Data-only
attack!

[S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-Data Attacks Are Realistic Threats,” in USENIX Security, 2005.]

execute(file=“/bin/sh”,
stdin=“touch /tmp/attacker-was-here”);

Run “/sh” with the input “touch
/tmp/attacker-was-here”

8

The attack does not corrupt
the victim’s control flow.

8

The attack does not corrupt
the victim’s control flow.

8

The attack does not corrupt
the victim’s control flow.

It only corrupts its function
arguments.

8

9

Why data-only
attacks are
considered
difficult

Application-
specific

knowledge

9

Why data-only
attacks are
considered
difficult

Application-
specific

knowledge

9

Why data-only
attacks are
considered
difficult

Application-
specific

knowledge

9

Why data-only
attacks are
considered
difficult

char * cgi_bin;

Application-
specific

knowledge

9

Why data-only
attacks are
considered
difficult

HTTP GET ...

HTTP HEAD ...

HTTP PUT ...

char * cgi_bin;

Application-
specific

knowledge

9

Why data-only
attacks are
considered
difficult

HTTP GET ...

HTTP HEAD ...

HTTP PUT ...

char * cgi_bin;

HTTP POST /sh ...

Application-
specific

knowledge

10

Why data-only
attacks are
considered
difficult

Heavyweight
analyses

Application-
specific

knowledge

10

Why data-only
attacks are
considered
difficult

Complex
dataflow

constraints

Heavyweight
analyses

Application-
specific

knowledge

10

Why data-only
attacks are
considered
difficult

Complex
dataflow

constraints

Bypass
defenses

Heavyweight
analyses

Application-
specific

knowledge

10

Why data-only
attacks are
considered
difficult

Complex
dataflow

constraints

Bypass
defenses

Turing-complete
gadget set

Heavyweight
analyses

Application-
specific

knowledge

10

Why data-only
attacks are
considered
difficult

Complex
dataflow

constraints

Bypass
defenses

Turing-complete
gadget set

Heavyweight
analyses

Application-
specific

knowledge

11

Why data-only
attacks are
considered
difficult

How data-only
attacks can be

Complex
dataflow

constraints

Bypass
defenses

Turing-complete
gadget set

Heavyweight
analyses

Application-
specific

knowledge

Victim executes
its intended code

11

Why data-only
attacks are
considered
difficult

How data-only
attacks can be

Complex
dataflow

constraints

Bypass
defenses

Turing-complete
gadget set

Heavyweight
analyses

Application-
specific

knowledge

Victim executes
its intended code

Victim passes attacker data
to a syscall verbatim

11

Why data-only
attacks are
considered
difficult

How data-only
attacks can be

execve(path=“/usr/cgi-bin...”, ...);

cgi_bin: “/usr/cgi-bin”

Complex
dataflow

constraints

Bypass
defenses

Turing-complete
gadget set

Heavyweight
analyses

Application-
specific

knowledge

Victim executes
its intended code

Victim passes attacker data
to a syscall verbatim

11

Why data-only
attacks are
considered
difficult

How data-only
attacks can be

Einstein: “As simple as possible, but not simpler”

12

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

What to overwrite it with?

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Exploit data copied verbatim

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Exploit data copied verbatim

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Exploit data copied verbatim

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

cgi_bin � “/bin”

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Exploit data copied verbatim

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

cgi_bin � “/bin”

execve(pathname = “/bin/...”, ...);

execve(pathname = “/usr/cgi-bin/...”, ...);

Which data to overwrite?

Einstein: “As simple as possible, but not simpler”

12

Use dynamic taint analysis

What to overwrite it with?

Exploit data copied verbatim

Victim server

Execution

fmt_str: &err_msg
err_lvl: “notice..info....debug..”
session_cnt: 21
retry_cnt: 224
cgi_bin: “/usr/cgi-bin”
cgi_pid: 3820
urandom_path: “/dev/urandom”
env_tmp: “FOO=XXXXXXXXXXXXXXXXXXX”
local_send_buffer: “HTTP/1.1 2...”
...

Data

HTTP GET ...
HTTP PUT ...

...

cgi_bin � “/bin”

execve(pathname = “/bin/...”, ...);

Evaluation: Setup

13

Evaluation: Setup

Target applications:

13

Evaluation: Setup

Target applications:

13

CVE-2022-23943
CVE-2022-41741
CVE-2007-4727
CVE-2023-36824
CVE-2021-32027

...

Evaluation: Setup

Target applications:

13

CVE-2022-23943
CVE-2022-41741
CVE-2007-4727
CVE-2023-36824
CVE-2021-32027

...

Evaluation: Setup

Target applications:

Workloads:

13

CVE-2022-23943
CVE-2022-41741
CVE-2007-4727
CVE-2023-36824
CVE-2021-32027

...

Evaluation: Setup

Target applications:

Workloads: Each application’s test suite

13

Evaluation

14

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

Evaluation

14

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

Evaluation

14

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

pathname argv envp

Evaluation

14

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

pathname argv envp

Evaluation

14

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

After initialization,
programs typically copy
strings around verbatim.

pathname argv envp

Evaluation

15

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73

mprotect 144 97 (68%) 98 (27%) 1

mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization,
programs typically copy
strings around verbatim.

pathname argv envp

Evaluation

15

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73

mprotect 144 97 (68%) 98 (27%) 1

mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization,
programs typically copy
strings around verbatim.

pathname argv envp

Evaluation

15

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73

mprotect 144 97 (68%) 98 (27%) 1

mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization,
programs typically copy
strings around verbatim.

Many types of syscalls
offer many primitives to
an attacker.

pathname argv envp

Evaluation

15

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73

mprotect 144 97 (68%) 98 (27%) 1

mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization,
programs typically copy
strings around verbatim.

Many types of syscalls
offer many primitives to
an attacker.

pathname argv envp

Evaluation

15

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73

mprotect 144 97 (68%) 98 (27%) 1

mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization,
programs typically copy
strings around verbatim.

Many types of syscalls
offer many primitives to
an attacker.

pathname argv envp

Evaluation

15

Syscall Total
covered

Total attacker-tainted args. (% that are copied from attacker-controllable data verbatim)

Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6

execve 11 7 (86%) 7 (86%) 7 (86%)

mmap 787 55 (5%) 441 (8%) 55 16 (100%) 17 73

mprotect 144 97 (68%) 98 (27%) 1

mremap 11 11 7 11 - -

pwrite64 1270 1217 (3%) 741 (47%) 399 (19%) 506 (36%)

pwritev 10 10 (100%) 10 (10%) - 10 (20%)

sendfile 1 - - 1 1

sendmmsg 2 2 2 - -

sendmsg 12 5 (100%) 3 (100%) -

sendto 431 389 (7%) 410 (38%) 408 (6%) - - -

write 3083 768 (74%) 2877 (91%) 1265 (10%)

writev 754 244 (18%) 742 (76%) -

After initialization,
programs typically copy
strings around verbatim.

Many types of syscalls
offer many primitives to
an attacker.

16

16

16

16

16

16

17

Comprehensive

17

Comprehensive

Practical
17

Comprehensive

Practical

Control-flow hijacking attacks

17

Comprehensive

Practical

Code pointer

Control-flow hijacking attacks

17

Comprehensive

Practical

Code pointer Indirect branch

Control-flow hijacking attacks

17

Comprehensive

Practical

Code pointer Indirect branch

Control-flow hijacking attacks

17

Comprehensive

Practical

Code pointer Indirect branch

Control-flow hijacking attacks

17

Comprehensive

Practical
18

Comprehensive

Practical

Data-only attacks

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

Any syscall
Any store
Any cond. branch
...

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

Any syscall
Any store
Any cond. branch
...

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

Any syscall
Any store
Any cond. branch
...

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

Any syscall
Any store
Any cond. branch
...

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

Any syscall
Any store
Any cond. branch
...

18

Comprehensive

Practical

Data-only attacks

Any string
Any number
Any boolean
…

Any syscall
Any store
Any cond. branch
...

19

20

20

We present Einstein, a data-only attack
generator.

20

It builds hundreds of exploits against
popular web servers.

We present Einstein, a data-only attack
generator.

20

It builds hundreds of exploits against
popular web servers.

We call upon researchers and vendors
to rethink mitigation strategies.

We present Einstein, a data-only attack
generator.

