
On the Effectiveness of Same-
Domain Memory Deduplication

Andreas Costi, Brian Johannesmeyer, Erik Bosman,
Cristiano Giuffrida, Herbert Bos

On the Effectiveness of Same-
Domain Memory Deduplication

Andreas Costi, Brian Johannesmeyer, Erik Bosman,
Cristiano Giuffrida, Herbert Bos

High-level takeaway

2

High-level takeaway
Current defenses against memory deduplication side channel attacks are based on
separating trusted data from untrusted data.

2

High-level takeaway
Current defenses against memory deduplication side channel attacks are based on
separating trusted data from untrusted data.

However, in this work, we present two case studies that highlight one key flaw in this
defense: that it is difficult to implement correctly, and hence, insufficient.

2

What is memory deduplication?

3

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

3

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

3

Physical Memory

Process B Virtual Memory

Process A Virtual Memory

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

4

Physical Memory

Process B Virtual Memory

Process A Virtual Memory

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

4

Physical Memory

Process B Virtual Memory

Process A Virtual Memory

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

4

Physical Memory

Process B Virtual Memory

Process A Virtual Memory

Read-only

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

4

Physical Memory

Process B Virtual Memory

Process A Virtual Memory

Copy-on-Write

Read-only

What is memory deduplication?
- A memory optimization technique used by OSes and hypervisors, which scans

and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

4

5

How is memory deduplication vulnerable?

5

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page:

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page:

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox

- In response, vendors rolled out mitigations, e.g.:

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox

- In response, vendors rolled out mitigations, e.g.:
- VMWare disabled inter-VM deduplication

5

Write to a normal page:
write

Write to a CoW page: CoW page fault Duplicate entire page Update Page Table Entries write

How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox

- In response, vendors rolled out mitigations, e.g.:
- VMWare disabled inter-VM deduplication
- Windows disabled arbitrary inter-process deduplication (as we will see next)

Security domain-based deduplication

6

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

6

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or

6

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

6

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

7

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

7

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security Domain: “A” != Security Domain: “B”

Pages not deduplicated

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

7

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security Domain: “A” != Security Domain: “B”

Pages not deduplicated

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

8

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security Domain: “A” != Security Domain: “B”

Pages not deduplicated

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

- Intra-security domain-based deduplication (e.g., same-process) is enabled by default.

8

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security Domain: “A” != Security Domain: “B”

Pages not deduplicated

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

- Intra-security domain-based deduplication (e.g., same-process) is enabled by default.
- However, a process can explicitly disable it.

8

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security Domain: “A” != Security Domain: “B”

Pages not deduplicated

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

- Intra-security domain-based deduplication (e.g., same-process) is enabled by default.
- However, a process can explicitly disable it.

- That way, none of a process’s own pages would deduplicate with themselves.
8

Process B Virtual Memory
Security Domain: “B”

Process A Virtual Memory
Security Domain: “A”

Security Domain: “A” != Security Domain: “B”

Pages not deduplicated

Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

- Intra-security domain-based deduplication (e.g., same-process) is enabled by default.
- However, a process can explicitly disable it.

- That way, none of a process’s own pages would deduplicate with themselves.
- This would be useful for e.g., a program handles safe and unsafe data within the same process. 8

Further mitigations in browsers

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

- As a result, an attacker cannot accurately time write operations via e.g., performance.now().

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

- As a result, an attacker cannot accurately time write operations via e.g., performance.now().
- However, later work bypasses this by finding alternative sources of fantastic timers.

9

Further mitigations in browsers
- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As a result, memory across different websites will not deduplicate, eliminating the deduplication

attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

- As a result, an attacker cannot accurately time write operations via e.g., performance.now().
- However, later work bypasses this by finding alternative sources of fantastic timers.
- E.g., by using a SharedArrayBuffer counter, one thread can increment a “timer” value in a loop,

while the other thread polls the “timer”.

9

Overview

10

Overview
- This work asks the question: are these mitigations sufficient?

10

Overview
- This work asks the question: are these mitigations sufficient?
- The answer: it depends on your threat model!

10

Overview
- This work asks the question: are these mitigations sufficient?
- The answer: it depends on your threat model!
- If you assume that all processes will never intermingle trusted and untrusted

data — then yes, it is sufficient!

10

Overview
- This work asks the question: are these mitigations sufficient?
- The answer: it depends on your threat model!
- If you assume that all processes will never intermingle trusted and untrusted

data — then yes, it is sufficient!
- However, we present two case studies that demonstrate that this assumption

does not hold in practice.

10

Overview
- This work asks the question: are these mitigations sufficient?
- The answer: it depends on your threat model!
- If you assume that all processes will never intermingle trusted and untrusted

data — then yes, it is sufficient!
- However, we present two case studies that demonstrate that this assumption

does not hold in practice.

10

Client-server scenario: Overview

11

Client-server scenario: Overview
- In this scenario, the server is the victim and the client is the attacker.

11

Client-server scenario: Overview
- In this scenario, the server is the victim and the client is the attacker.
- Setup:

11

Client-server scenario: Overview
- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.

11

Client-server scenario: Overview
- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.
- The client: (1) sends data to the server, and (2) times the server’s responses.

11

Client-server scenario: Overview
- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.
- The client: (1) sends data to the server, and (2) times the server’s responses.

- This resembles e.g., a server such as a nginx running a key-value store, which
untrusted clients can connect to.

11

Client-server scenario: Exploit steps

12

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

12

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page

12

Client-server scenario: Creating the secret page

13

CLIENT

4095 BYTES OF KNOWN DATA

Client-server scenario: Creating the secret page

13

CLIENT

4095 BYTES OF KNOWN DATA

SERVER
Page-

aligned
memory

KNOWN DATA

4K
Boundary

Client-server scenario: Creating the secret page

13

CLIENT

4095 BYTES OF KNOWN DATA

SERVER
Page-

aligned
memory

KNOWN DATA

4K
Boundary

SECRET
41 42 43 44 45 46 47 48 49 ...

4K
Boundary

Client-server scenario: Creating the secret page

13

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page

14

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

15

Client-server scenario: Creating probe pages

16

CLIENT

KNOWN DATA 41

KNOWN DATA 42

KNOWN DATA ...

Probe pages

Client-server scenario: Creating probe pages

16

CLIENT

KNOWN DATA 41

KNOWN DATA 42

KNOWN DATA ...

Probe pages

SERVER

KNOWN DATA 41

KNOWN DATA 42

KNOWN DATA ...

Client-server scenario: Creating probe pages

16

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

17

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.

18

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.

19

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.

20

Client-server scenario: Probing

21

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

Client-server scenario: Probing

For example, let’s leak one byte of
the server’s secret.

21

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

SERVER

KNOWN DATA SECRET
41 42 43 44 45 46 47 48 ...

KNOWN DATA 41

KNOWN DATA 42

KNOWN DATA ...

Probe pages

Client-server scenario: Probing

For example, let’s leak one byte of
the server’s secret.

21

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

SERVER

KNOWN DATA SECRET
42 43 44 45 46 47 48 ...

KNOWN DATA 41

KNOWN DATA 42

KNOWN DATA ...

Probe pages

41

Client-server scenario: Probing

For example, let’s leak one byte of
the server’s secret.

21

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

SERVER

KNOWN DATA SECRET
42 43 44 45 46 47 48 ...

KNOWN DATA 41

KNOWN DATA 42

KNOWN DATA ...

Probe pages

41

CLIENT

Client-server scenario: Probing

For example, let’s leak one byte of
the server’s secret.

21

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

22

Client-server scenario: Exploit steps
1. Prime: The client sends data to the server, including:

a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

4. The client repeats steps 1–3 to disclose secret data byte-by-byte.

23

Client-server scenario: Alignment probing

24

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.

24

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.

24

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

24

Known data

Secret page

0xdeadbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

Known data

Secret page Probe pages

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

0xdeadbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

Known data

Secret page Probe pages

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

Physical Memory

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

Known data
0xef

0xdeadbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

Known data

Secret page Probe pages

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

Physical Memory

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xda

Known data
0xcb

Known data
0xef

0xdeadbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

Known data

Secret page Probe pages

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

Physical Memory

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xda

Known data
0xcb

0xdeadbeef

Known data
0xaaef

Known data
0xabef

Known data
0xacef

Known data
0xbeef

Known data
0xdaef

Known data
0xcbef

Known data
0xaaef

Known data
0xabef

Known data
0xacef

Known data
0xbeef

Known data
0xdaef

Known data
0xcbef

Known data
0xbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

Known data

Secret page Probe pages

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

Physical Memory

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xda

Known data
0xcb

0xdeadbeef

Known data
0xaaef

Known data
0xabef

Known data
0xacef

Known data
0xbeef

Known data
0xdaef

Known data
0xcbef

Known data
0xaaef

Known data
0xabef

Known data
0xacef

Known data
0xdaef

Known data
0xcbef

Known data
0xbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

Known data

Secret page Probe pages

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xef

Known data
0xda

Known data
0xcb

Physical Memory

Known data
0xaa

Known data
0xac

Known data
0xab

Known data
0xda

Known data
0xcb

Known data
0xaaef

Known data
0xabef

Known data
0xacef

Known data
0xbeef

Known data
0xdaef

Known data
0xcbef

Known data
0xaaef

Known data
0xabef

Known data
0xacef

Known data
0xdaef

Known data
0xcbef

Known data
0xbeef

Client-server scenario: Alignment probing
- We assume that the client can manipulate the alignment of secret data based on how much data it

sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As a result, the client can disclose secret memory byte-by-byte.

25

0xdeadbeef

Client-server scenario: Results

26

Client-server scenario: Results
- There are significant timing differences between a normal write and dedup write

26

Client-server scenario: Results
- There are significant timing differences between a normal write and dedup write

- The average server response time after a normal write: 97μs

26

Client-server scenario: Results
- There are significant timing differences between a normal write and dedup write

- The average server response time after a normal write: 97μs
- The average server response time after a CoW write: 240μs

26

Client-server scenario: Results
- There are significant timing differences between a normal write and dedup write

- The average server response time after a normal write: 97μs
- The average server response time after a CoW write: 240μs

- 85% of the CoW write operations took more than 205μs to complete

26

Client-server scenario: Conclusion

27

Client-server scenario: Conclusion
- We did make some assumptions (e.g., that we have an alignment probing

primitive), but this was meant to be a proof-of-concept.

27

Client-server scenario: Conclusion
- We did make some assumptions (e.g., that we have an alignment probing

primitive), but this was meant to be a proof-of-concept.
- Some programs (e.g., a client-server scenario) necessarily handle both untrusted

data and trusted data.

27

Client-server scenario: Conclusion
- We did make some assumptions (e.g., that we have an alignment probing

primitive), but this was meant to be a proof-of-concept.
- Some programs (e.g., a client-server scenario) necessarily handle both untrusted

data and trusted data.
- Hence, such programs are not easily amenable to security domain-based

deduplication mitigations, which require the separation of trusted and untrusted
data.

27

Browser cross-tab scenario: Overview

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

- The browser has multiple tabs open

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:
- Firefox uses a maximum of 8 content processes, which run e.g., tabs.

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:
- Firefox uses a maximum of 8 content processes, which run e.g., tabs.
- If a 9th tab is opened, then Firefox runs it in the same process as another tab.

28

Browser cross-tab scenario: Overview
- In this scenario, the browser is the victim and a webpage is the attacker.

- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:
- Firefox uses a maximum of 8 content processes, which run e.g., tabs.
- If a 9th tab is opened, then Firefox runs it in the same process as another tab.
- Since the attacker and victim share a process, their data can deduplicate.

28

Browser cross-tab scenario: Exploit steps

29

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.

29

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.

29

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

29

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

2. Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

29

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

2. Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

3. The attacker keeps the fingerprints of possible victim webpages in its memory.

29

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed Array
Data (Tab

Fingerprint)

Browser cross-tab scenario: Priming

30

V. Tab 1 V. Tab 2 V. Tab 3 V. Tab 4 V. Tab 5 V. Tab 6 V. Tab 7 V. Tab 8 Attacker
Tab

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed
Array
Data
(Tab

Finger
print)

Typed Array
Data (Tab

Fingerprint)
Tab F.P.

1
Tab F.P.

2

Tab F.P.
3

Tab F.P.
4

Tab F.P.
..

Tab F.P.
8

Browser cross-tab scenario: Priming

30

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

2. Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

3. The attacker replicates the fingerprints of possible victim webpages in its memory.

31

Browser cross-tab scenario: Exploit steps
1. The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

2. Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

3. The attacker replicates the fingerprints of possible victim webpages in its memory.
4. After a deduplication pass, the attacker writes to each of its fingerprints, timing

each operation via a SharedArrayBuffer counter.

32

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

polls

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

time

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

writes

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

polls

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

time

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:
- We wrote to a CoW page.

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint

deduplicated with website X’s fingerprint.

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint

deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint

deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

- If the write to fingerprint Y was fast, then:

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint

deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

- If the write to fingerprint Y was fast, then:
- We wrote to a normal page.

Browser cross-tab scenario: Probing

33

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1 Tab F.P. 2

Tab F.P. 3 Tab F.P. 4

Tab F.P. .. Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

- If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint

deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

- If the write to fingerprint Y was fast, then:
- We wrote to a normal page.
- We can only conclude that we’re not sharing a

process with website Y.

Browser cross-tab scenario: Probing

33

Browser cross-tab scenario: Conclusion

34

Browser cross-tab scenario: Conclusion
This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

34

Browser cross-tab scenario: Conclusion
This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- I.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

34

Browser cross-tab scenario: Conclusion
This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- I.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

- Such a code rewrite is non-trivial in practice.

34

Browser cross-tab scenario: Conclusion
This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- I.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

- Such a code rewrite is non-trivial in practice.
- In particular, Firefox didn’t mitigate this until November 2021, when it adopted full

site isolation.

34

Conclusion

35

Conclusion
- Deduplication-based side channel attacks are still feasible because it is non-trivial

to separate programs into separate security domains.

35

Conclusion
- Deduplication-based side channel attacks are still feasible because it is non-trivial

to separate programs into separate security domains.
- However, not all hope is lost! Promising mitigations exist, e.g.:

35

Conclusion
- Deduplication-based side channel attacks are still feasible because it is non-trivial

to separate programs into separate security domains.
- However, not all hope is lost! Promising mitigations exist, e.g.:

- Opt-in security domain-based deduplication, i.e., deduplication is off by default.

35

Conclusion
- Deduplication-based side channel attacks are still feasible because it is non-trivial

to separate programs into separate security domains.
- However, not all hope is lost! Promising mitigations exist, e.g.:

- Opt-in security domain-based deduplication, i.e., deduplication is off by default.
- VUsion, a mechanism that ensures the same behavior on all pages of a system.

35

Thank you!

36

