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High-level takeaway
Current defenses against memory deduplication side channel attacks are based on 
separating trusted data from untrusted data.

However, in this work, we present two case studies that highlight one key flaw in this 
defense: that it is difficult to implement correctly, and hence, insufficient.
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How is memory deduplication vulnerable?
- However, deduplication is prone to timing side channel attacks, which stem from 

the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox

- In response, vendors rolled out mitigations, e.g.:
- VMWare disabled inter-VM deduplication
- Windows disabled arbitrary inter-process deduplication (as we will see next)
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Security domain-based deduplication
- In response, Windows only deduplicates pages if either:

- (1) The pages contain safe data (e.g., all 0s or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

- Intra-security domain-based deduplication (e.g., same-process) is enabled by default.
- However, a process can explicitly disable it.

- That way, none of a process’s own pages would deduplicate with themselves.
- This would be useful for e.g., a program handles safe and unsafe data within the same process. 8
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- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of 
native timers.

- As a result, an attacker cannot accurately time write operations via e.g., performance.now().
- However, later work bypasses this by finding alternative sources of fantastic timers.
- E.g., by using a SharedArrayBuffer counter, one thread can increment a “timer” value in a loop, 

while the other thread polls the “timer”.
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Client-server scenario: Overview
- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.
- The client: (1) sends data to the server, and (2) times the server’s responses.

- This resembles e.g., a server such as a nginx running a key-value store, which 
untrusted clients can connect to.
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a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the 

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. If it was fast, then the data remained was not deduplicated, so: secret data ≠ probe data.

4. The client repeats steps 1–3 to disclose secret data byte-by-byte.
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- 85% of the CoW write operations took more than 205μs to complete
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- We did make some assumptions (e.g., that we have an alignment probing 

primitive), but this was meant to be a proof-of-concept.
- Some programs (e.g., a client-server scenario) necessarily handle both untrusted 

data and trusted data.
- Hence, such programs are not easily amenable to security domain-based 

deduplication mitigations, which require the separation of trusted and untrusted 
data.
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- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:
- Firefox uses a maximum of 8 content processes, which run e.g., tabs.
- If a 9th tab is opened, then Firefox runs it in the same process as another tab.
- Since the attacker and victim share a process, their data can deduplicate.
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webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

2. Because of Firefox’s limitation, one process runs both the malicious webpage’s 
code and a victim webpage’s code.

3. The attacker replicates the fingerprints of possible victim webpages in its memory.
4. After a deduplication pass, the attacker writes to each of its fingerprints, timing

each operation via a SharedArrayBuffer counter.
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- Hence, we know that our probe fingerprint 

deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

- If the write to fingerprint Y was fast, then:
- We wrote to a normal page.
- We can only conclude that we’re not sharing a 

process with website Y.
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security domain-based deduplication:

- I.e., where programs are rewritten such that processes that handle untrusted 
data are separated from processes that handle trusted data.

- Such a code rewrite is non-trivial in practice.
- In particular, Firefox didn’t mitigate this until November 2021, when it adopted full 

site isolation.
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Conclusion
- Deduplication-based side channel attacks are still feasible because it is non-trivial 

to separate programs into separate security domains.
- However, not all hope is lost! Promising mitigations exist, e.g.:

- Opt-in security domain-based deduplication, i.e., deduplication is off by default.
- VUsion, a mechanism that ensures the same behavior on all pages of a system.
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Thank you!
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