On the Effectiveness of Same-
Domain Memory Deduplication

Andreas Costi, Brian Johannesmeyer, Erik Bosman,
Cristiano Giuffrida, Herbert Bos

On the Effectiveness of Same-
Domain Memory Deduplication

Andreas Costi, Brian Johannesmeyer, Erik Bosman,
Cristiano Giuffrida, Herbert Bos

High-level takeaway

High-level takeaway

Current defenses against memory deduplication side channel attacks are based on
separating trusted data from untrusted data.

High-level takeaway

Current defenses against memory deduplication side channel attacks are based on
separating trusted data from untrusted data.

However, in this work, we present two case studies that highlight one key flaw in this
defense: that it is difficult to implement correctly, and hence, insufficient.

What is memory deduplication?

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

Process A Virtual Memory

Physical Memory

Process B Virtual Memory

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

Process A Virtual Memory

Physical Memory

Process B Virtual Memory

g 4

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

Process A Virtual Memory

Physical Memory

Process B Virtual Memory

g 4

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

Process A Virtual Memory

Physical Memory

Process B Virtual Memory Read-only

What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.

Process A Virtual Memory

Physical Memory

Process B Virtual Memory Read-only

Y Copy-on-Write

How is memory deduplication vulnerable?

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

Write to a normal page:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

Write to a normal page:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

. write
Write to a normal page: @ » °°

S~—"~

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

. write
Write to a normal page: @ » °°

S~—"~

Write to a CoW page:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

. write
Write to a normal page: @ » °°

Write to a CoW page:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
Break ASLR,

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
Break ASLR,
Break OpenSSH, GPG/APT update mechanisms, and

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
Break ASLR,
Break OpenSSH, GPG/APT update mechanisms, and
Escape the browser’s sandbox

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
Break ASLR,
Break OpenSSH, GPG/APT update mechanisms, and
Escape the browser’s sandbox

- Inresponse, vendors rolled out mitigations, e.g.:

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox
- Inresponse, vendors rolled out mitigations, e.g.:
- VMWare disabled inter-VM deduplication

How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox
- Inresponse, vendors rolled out mitigations, e.g.:

- VMWare disabled inter-VM deduplication
- Windows disabled arbitrary inter-process deduplication (as we will see next)

Security domain-based deduplication

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
(1) The pages contain safe data (e.g., all Os or 1s), or

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
(1) The pages contain safe data (e.g., all Os or 1s), or
(2) The pages are from the same security domain (e.g., from the same process).

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

- Intra-security domain-based deduplication (e.g., same-process) is enabled by defaulit.

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

- Intra-security domain-based deduplication (e.g., same-process) is enabled by defaulit.
- However, a process can explicitly disable it.

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

- Intra-security domain-based deduplication (e.g., same-process) is enabled by defaulit.

- However, a process can explicitly disable it.
- That way, none of a process’s own pages would deduplicate with themselves.

Security domain-based deduplication

- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

- Intra-security domain-based deduplication (e.g., same-process) is enabled by defaulit.

- However, a process can explicitly disable it.
- That way, none of a process’s own pages would deduplicate with themselves.
- This would be useful for e.g., a program handles safe and unsafe data within the same process.

Further mitigations in browsers

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication
with their recent adoption of site isolation, i.e.:

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
Each website open in the browser runs in its own process.

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.
- In particular, at the time of our research, Firefox had a partial implementation of site isolation.

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.
- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.
- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.
- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of

native timers.
- As aresult, an attacker cannot accurately time write operations via e.g., performance.now().

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication

with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.
- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.
- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of

native timers.

- As aresult, an attacker cannot accurately time write operations via e.g., performance.now().
- However, later work bypasses this by finding alternative sources of fantastic timers.

Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication
with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.

- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

As a result, an attacker cannot accurately time write operations via e.g., performance.now().
However, later work bypasses this by finding alternative sources of fantastic timers.

E.g., by using a SharedArrayBuffer counter, one thread can increment a “timer” value in a loop,
while the other thread polls the “timer”.

Overview

10

Overview

- This work asks the question: are these mitigations sufficient?

10

Overview

- This work asks the question: are these mitigations sufficient?
- The answer: it depends on your threat model!

10

Overview

- This work asks the question: are these mitigations sufficient?

- The answer: it depends on your threat model!

- If you assume that all processes will never intermingle trusted and untrusted
data — then yes, it is sufficient!

10

Overview

- This work asks the question: are these mitigations sufficient?

- The answer: it depends on your threat model!

- If you assume that all processes will never intermingle trusted and untrusted
data — then yes, it is sufficient!

- However, we present two case studies that demonstrate that this assumption
does not hold in practice.

10

Overview

- This work asks the question: are these mitigations sufficient?

- The answer: it depends on your threat model!

- If you assume that all processes will never intermingle trusted and untrusted
data — then yes, it is sufficient!

- However, we present two case studies that demonstrate that this assumption
does not hold in practice.

10

Client-server scenario: Overview

11

Client-server scenario: Overview

- In this scenario, the server is the victim and the client is the attacker.

11

Client-server scenario: Overview

- In this scenario, the server is the victim and the client is the attacker.
- Setup:

11

Client-server scenario: Overview

- In this scenario, the server is the victim and the client is the attacker.
- Setup:

The server: stores untrusted data from the client alongside its own secret data.

11

Client-server scenario: Overview

- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.

- The client: (1) sends data to the server, and (2) times the server’s responses.

11

Client-server scenario: Overview

- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.

- The client: (1) sends data to the server, and (2) times the server’s responses.

- This resembles e.g., a server such as a nginx running a key-value store, which
untrusted clients can connect to.

11

Client-server scenario: Exploit steps

12

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:

12

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page

12

Client-server scenario: Creating the secret page

13

Client-server scenario: Creating the secret page

CLIENT

13

Client-server scenario: Creating the secret page

SERVER
Page
aligned Bou4nK e
riemory
KNOWN DATA
CLIENT

13

Client-server scenario: Creating the secret page

SERVER

Page
'alligned Bou4n‘}ary Bou4nK ary
emory

S == e

i
____________ KNOWNDATA | 41 4243444546)474849..
CLIENT

——

__

13

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page

14

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

15

Client-server scenario: Creating probe pages

16

Client-server scenario: Creating probe pages

CLIENT
________________ oo | a1
~ KNOWNDATA | 42 | >Probe pages
------- KNOWNDATA | ..

Client-server scenario: Creating probe pages

CLIENT SERVER
________________ CNOWNDATA | 41) T kownoaa a1
T KNOWNDATA | 42 Probepagesmmmmmb | vownDATA | 42
"""" KNOWN DATA | .. | ~ KNOWNDATA | ..

16

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

17

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.

18

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the
server to respond.

19

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. Ifit was slow, then the data was deduplicated, so: secret data = probe data.

20

Client-server scenario: Probing

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

21

Client-server scenario: Probing

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

For example, let’s leak one byte of
the server’s secret.

21

Client-server scenario: Probing

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page

b. Multiple probe pages

2. The client waits for a deduplication pass to occur.

3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.

a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

SERVER
o U SECRET S
_____ KNOWNDATA | 41 4243444546 4748..
__ KNOWNDATA | 41
____KNOWNDATA | 42 | ~Probe pages
_ KNOWNDATA | ..

For example, let’s leak one byte of
the server’s secret.

21

Client-server scenario: Probing

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

SERVER
C NMAWIN NATA a4 11 SECRET For example, let’s leak one byte of
KNOWN DATA [41 : ’
__________________________________ 4243444546 4748 .. . the server’'s secret.
_ KNOWNDATA | 41
_ KNOWNDATA | 42 . ~-Probepages
_ KNOWNDATA | .. | 2

Client-server scenario: Probing

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

SERVER
C NMAWIN NATA a4 11 SECRET For example, let’s leak one byte of
KNOWN DATA [41 : ’
__________________________________ 4243444546 4748 .. . the server’'s secret.
"""""" KNOWN DATA | 41

e S S S g S U SR

CLIENT

S

21

S

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

22

Client-server scenario: Exploit steps

1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

4. The client repeats steps 1-3 to disclose secret data byte-by-byte.

23

Client-server scenario: Alignment probing

24

Client-server scenario: Alignment probing

We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

24

Client-server scenario: Alignment probing

- We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.
- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.

24

Client-server scenario: Alignment probing

- We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.

- As aresult, the client can disclose secret memory byte-by-byte.

24

Client-server scenario: Alignment probing

- We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.

- As aresult, the client can disclose secret memory byte-by-byte.

Oxdeadbe‘ef

Known data

Secret page

25

Client-server scenario: Alignment probing

We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As aresult, the client can disclose secret memory byte-by-byte.

Oxdead be‘ef
0 Oxab
Known data Known data
Known data Oxac Oxef
Known data Known dat:
0xd 0xcb
Known data Known dat:

Secret page Probe pages

25

Client-server scenario: Alignment probing

We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As aresult, the client can disclose secret memory byte-by-byte.

Physical Memory

l Oxaa Oxab
OXd ead b f Known data Known data
0 Oxab
Known data Known data 0 Oxef
Known data Known data
Known data Oxac Oxef
Known data Known data oxda Oxch
Known data Known data
Oxda 0xcb
Known data Known data
Oxef
Known data

Secret page Probe pages

25

Client-server scenario: Alignment probing

We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As aresult, the client can disclose secret memory byte-by-byte.

Physical Memory

Oxaa Oxab
OXd ead bJef Known data Known data
Oxaa Oxab
Known data Known data
Oxac
Known data
Known data Oxac Oxef
Known data Known data oxda Oxch
Known data Known data
Oxda 0xcb
Known data Known data *
Oxef
Known data

Secret page Probe pages

25

Client-server scenario: Alignment probing

- We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As aresult, the client can disclose secret memory byte-by-byte.

Physical Memory

Oxaaef Oxabef
OXdead beef Known data Known data
Oxaaef Oxabef
Known data Known data Oxacef Oxbeef
Known data Known data
K n OWﬂ d ata Oxacef Oxbeef
Known data Known data Oxdaef Oxcbef
Known data Known data
Oxdaef Oxcbef
Known data Known data
Oxbeef
Known data

Secret page Probe pages

25

Client-server scenario: Alignment probing

- We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As aresult, the client can disclose secret memory byte-by-byte.

Physical Memory

Oxaaef Oxabef
OXdead beef Known data Known data
Oxaaef Oxabef
Known data Known data
Oxacef
Known data
K n OWﬂ d ata Oxacef Oxbeef
Known data Known data Oxdaef Oxcbef
Known data Known data
Oxdaef Oxcbef
Known data Known data *
Oxbeef
Known data

Secret page Probe pages

25

Client-server scenario: Alignment probing

- We assume that the client can manipulate the alignment of secret data based on how much data it
sends to the server.

- Hence, the client can push the secret data out of the memory page boundary to reduce entropy.
- As aresult, the client can disclose secret memory byte-by-byte.

Physical Memory

Oxaaef Oxabef
OXd ead beef Known data Known data
Oxaaef Oxabef
Known data Known data
Oxacef
Known data
K n OWﬂ d ata Oxacef Oxbeef
Known data Known data Oxdaef Oxcbef
Known data Known data
Oxdaef Oxcbef
Known data Known data *
Oxbeef
Known data

Secret page Probe pages

25

Client-server scenario: Results

1 - 350
/ i
|
/ ! 300 -
| -
-
08 ! ="
] 250
07 I -
-]
‘ !
v‘ —_
%
6 / 4 o0
g f , o
] £
2 ' =
3 i o
g [| 2150
& z
. z
0 (| 100
'
!
- _J) 50
_—
(,
4 5 :

—
V 1 2 3

0.1
e
Deduplication Round
26

[

1 120
Write Time

e Client-Server Dedun W ’

ent-Server Dedup Wrie e Clint-Server Normal Write = = = Client-Server Dedup Write

Client-Server Norma Write

Client-server scenario: Results

- There are significant timing differences between a normal write and dedup write

1 350
09
300 Y
08 | T e=T
: --
. 250
")
L 2200
g o
g =
€05 E
g £ 150
] o
2
03 100
0.2 "
. 1
J 50
-
01 /
)
/ 0
'
1 2 3 4 5 6
1 120 B
Deduplication Round
Write Time
—— (lient-Server Norma Write = === Client-Server Dedup Write

e (Client-Server Norma Write' = = = Client-Server Dedup Write

Client-server scenario: Results

09

08

07

06

05

equency (%)

0.2

01

——— (lient-Server Normal Write

Write Time

120

= ===Client-Server Dedup Write

350
300
250

]

2200

o
2150

100

There are significant timing differences between a normal write and dedup write
The average server response time after a normal write: 97us

-
-
-
-
-
-

1 2 3 4 5 6

Deduplication Round

e (Client-Server Norma Write' = = = Client-Server Dedup Write

26

Client-server scenario: Results

09

08

07

06

05

equency (%)

03

0.2

01

There are significant timing differences between a normal write and dedup write

The average server response time after a normal write: 97us
The average server response time after a CoW write: 240us

——— (lient-Server Normal Write

Write Time

120

= ===Client-Server Dedup Write

350
300
250

m

2200

o
2150

100

-
-
-
-
-
-

1 2 3 4 5 6

Deduplication Round

e (Clignt-Server Norma Write = = = Client-Server Dedup Write

26

Client-server scenario: Results

- There are significant timing differences between a normal write and dedup write
- The average server response time after a normal write: 97us
- The average server response time after a CoW write: 240us

- 85% of the CoW write operations took more than 205us to complete

! 350

09
300
08

-
-
-
-
-
-

250
07

06

n
— 2200
£ v
! £
g 05 ! F
o
: | 150
\: 1
04 i z
!
03 100
|
i
02 1 .
01 - /
J

0

0 ' 1 2 3 4 5 6
2 120
Deduplication Round

Write Time 26

—— Client-Server Normal Write -~~~ Client-Server Dedup Write s Client-Server Normal Write = = = Client-Server Dedup Write

Client-server scenario: Conclusion

27

Client-server scenario: Conclusion

- We did make some assumptions (e.g., that we have an alignment probing
primitive), but this was meant to be a proof-of-concept.

27

Client-server scenario: Conclusion

- We did make some assumptions (e.g., that we have an alignment probing
primitive), but this was meant to be a proof-of-concept.

- Some programs (e.g., a client-server scenario) necessarily handle both untrusted
data and trusted data.

27

Client-server scenario: Conclusion

- We did make some assumptions (e.g., that we have an alignment probing
primitive), but this was meant to be a proof-of-concept.

- Some programs (e.g., a client-server scenario) necessarily handle both untrusted
data and trusted data.

- Hence, such programs are not easily amenable to security domain-based

deduplication mitigations, which require the separation of trusted and untrusted
data.

27

Browser cross-tab scenario: Overview

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.
The browser has multiple tabs open

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.
The browser has multiple tabs open
The malicious webpage is trying to deduce which other tabs are open

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.
The browser has multiple tabs open
The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.
- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:
- Firefox uses a maximum of 8 content processes, which run e.g., tabs.

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.
- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:

- Firefox uses a maximum of 8 content processes, which run e.g., tabs.
- If a 9th tab is opened, then Firefox runs it in the same process as another tab.

28

Browser cross-tab scenario: Overview

- In this scenario, the browser is the victim and a webpage is the attacker.
- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:

- Firefox uses a maximum of 8 content processes, which run e.g., tabs.
- If a 9th tab is opened, then Firefox runs it in the same process as another tab.
- Since the attacker and victim share a process, their data can deduplicate.

28

Browser cross-tab scenario: Exploit steps

29

Browser cross-tab scenario: Exploit steps

1. The browser has at least 9 tabs open, where at least 1 tab is a malicious
webpage.

29

Browser cross-tab scenario: Exploit steps

1. The browser has at least 9 tabs open, where at least 1 tab is a malicious
webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.

29

Browser cross-tab scenario: Exploit steps

1. The browser has at least 9 tabs open, where at least 1 tab is a malicious
webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

29

Browser cross-tab scenario: Exploit steps

1. The browser has at least 9 tabs open, where at least 1 tab is a malicious
webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

2. Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

29

Browser cross-tab scenario: Exploit steps

1.

The browser has at least 9 tabs open, where at least 1 tab is a malicious
webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.
The attacker keeps the fingerprints of possible victim webpages in its memory.

29

Browser cross-tab scenario: Priming

V. Tab 1

V. Tab 2

V.Tab 3

V. Tab 4

V.Tab 5

V. Tab 6

V.Tab 7

V.Tab 8

Attacker
Tab

30

Browser cross-tab scenario: Priming

V. Tab 1 V.Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V.Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab
Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

30

Browser cross-tab scenario: Priming

V. Tab 1

V. Tab 2

V.Tab 3

V. Tab 4

V.Tab 5

V. Tab 6

V.Tab 7

V.Tab 8

Attacker
Tab

|

Content
Process 1

Content
Process 2

Content
Process 3

Content
Process 4

Content
Process 5

Content
Process 6

Content
Process 7

Content Process 8

Typed
Array
Data
(Tab
Finger
print)

30

Browser cross-tab scenario: Priming

V. Tab 1 V. Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab
Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7
. Typed ||| Typed !
. Array | |i Array |
' Data !|||! Data |
. (Tab !|||! (Tab
. Finger !|||! Finger !
. print) |||\ print)

30

Browser cross-tab scenario: Priming

V. Tab 1 V. Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab

Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

. Typed || Typed :||i Typed !

i Array |||[i Array |||i Array

' Data !|||! Data !|||! Data !

. (Tab ||| (Tab ||| (Tab |

. Finger !|||! Finger |||\ Finger |

. print) |||\ print) || print)

30

Browser cross-tab scenario: Priming

V. Tab 1 V. Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab

Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

. Typed !|[|! Typed || Typed :|||! Typed :

. Array |||\ Array |||\ Array |||\ Array |

+ Data ||||! Data ||| Data ||| Data !

. (Tab !|[|! (Tab || (Tab i|||! (Tab

. Finger |||! Finger |||\ Finger ![||: Finger |

. print) |||: print) ||\ print) ||| print) |

30

Browser cross-tab scenario: Priming

V. Tab 1 V. Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab

Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

. Typed || Typed :||i Typed :|||! Typed :|||! Typed !

. Array |||\ Array |||\ Array |||\ Array |||\ Array |

+ Data ||| Data !|||! Data !|||! Data !|||' Data |

. (Tab ||| (Tab ||| (Tab i|||! (Tab |||! (Tab !

. Finger |||! Finger |||\ Finger ![||: Finger ||||: Finger |

. print) |||\ print) ||\ print) |||! print) .|||! print)

30

Browser cross-tab scenario: Priming

V.Tab 1 V. Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab

Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

. Typed !|[|! Typed || Typed :|||! Typed :|||: Typed !||[i Typed !

. Array ||| Array |||\ Array |||\ Array ||\ Array || Array |

+ Data |||: Data !|||: Data ||| Data !|||: Data |||! Data |

. (Tab !|[|! (Tab ||} (Tab i|||! (Tab :[||! (Tab !||[! (Tab !

. Finger |||! Finger |||\ Finger ||||! Finger :|||! Finger .|||: Finger |

. print) |||\ print) ||\ print) |/|! print) .[||: print) || print)

30

Browser cross-tab scenario: Priming

V.Tab 1 V.Tab 2 V.Tab 3 V. Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab
Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7
. Typed || Typed :||i Typed :|||! Typed :|[|! Typed :||i Typed :||! Typed |
. Array ||| Array |||\ Array |||\ Array ||\ Array |||\ Array .|| Array |
+ Data ||| Data !|||! Data !|||! Data ||| Data !|||: Data !|||! Data |
. (Tab |||} (Tab || (Tab ||| (Tab ||| (Tab !|||! (Tab ||| (Tab
. Finger |||! Finger :|||! Finger !|||! Finger :|||! Finger :|||: Finger .|/|. Finger |
. print) |||\ print) ||\ print) |||! print) |[|! print) ||| print) |||. print)

30

Browser cross-tab scenario: Priming

V. Tab 1 V. Tab 2 V.Tab 3 V.Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab

Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

| Al] ik 1k Al 1NE |l| 1 Typed Array |
. Typed i|||! Typed || Typed ||| Typed i||[. Typed ![||! Typed ||| Typed || Data(Tab
. Array |||\ Array ||\ Array ||| Array :|||i Array ||| Array ||| Array | |: Fingerprint) |
+ Data ||| Data !|||! Data !|||! Data ||| Data !|||: Data !|||! Data |

. (Tab |||} (Tab || (Tab ||| (Tab ||| (Tab !|||! (Tab ||| (Tab

. Finger |||! Finger :|||! Finger !|||! Finger :|||! Finger :|||: Finger .|/|. Finger |

. print) |||\ print) ||\ print) |||! print) |[|! print) ||| print) |||. print)

30

Browser cross-tab scenario: Priming

V.Tab 1 V. Tab 2 V.Tab 3 V. Tab 4 V.Tab 5 V. Tab 6 V.Tab7 | V.Tab 8 | Attacker
Tab

Content Content Content Content Content Content Content Content Process 8
Process 1 | Process 2 | Process 3 | Process 4 | Process 5 | Process 6 | Process 7

| A Al Ak A A Al |l| 1 Typed Array |
. Typed i|||! Typed || Typed ||| Typed i||[. Typed ![||! Typed ||| Typed || Data(Tab
. Array ||| Array |||\ Array |||\ Array ||\ Array |||\ Array .|| Array | . Fingerprint) |
' Data AL Data 1L Data L Data I Data AL Data L Data [[1 TabFP. t|[1 TabFP.
. (Tab |||} (Tab ||| (Tab !|||! (Tab ||| (Tab ||| (Tab |||} (Tab ||L____] L2
. Finger |||! Finger :|||! Finger |||\ Finger !|||: Finger :|||: Finger .|/|. Finger | [l TabFP. [} TabFP. |
i print) || [\ print) |[[i print) :|[[print) |||\ print) ||| print) ||| print) :
| ol ol |] i ol ol [|} TabF.P. ' TabF.P.
! l L Jl L L L l L)L [. o 8 i

30

Browser cross-tab scenario: Exploit steps

1.

The browser has at least 9 tabs open, where at least 1 tab is a malicious
webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.
The attacker replicates the fingerprints of possible victim webpages in its memory.

31

Browser cross-tab scenario: Exploit steps

1.

w

The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

The attacker replicates the fingerprints of possible victim webpages in its memory.
After a deduplication pass, the attacker writes to each of its fingerprints, timing
each operation via a SharedArrayBuffer counter.

32

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

polls

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

time

SharedArrayBuffer
Timer

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

L S ==

Typed Array Data
(Tab Fingerprint)

1 1
TabFP.1 ||l TabF.P.2

1

1 \ 1
TabFP.3 ||, TabF.P.4

1

1 | 1
TabF.P... ! . TabF.P.8

1

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

polls

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

time

SharedArrayBuffer
Timer

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

SharedArrayBuffer
Timer

Probe pages

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

Probe pages

If the write to fingerprint X was slow, then:

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

Typed Array Data
(Tab Fingerprint)

Tab F.P. 1

Tab F.P. 2

Tab F.P. 3

Tab F.P. 4

Tab F.P. ..

Tab F.P. 8

Probe pages

If the write to fingerprint X was slow, then:
We wrote to a CoW page.

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

. Typed Array Data |
. (Tab Fingerprint) |

1 1
i TabF.P.1 . TabF.P.2
: | !
1
Tab F.P. 3 TabF.P.4 ! Probe pages
T 1
| TabFP.. ||l TabFP.8
1

-~ If the write to fingerprint X was slow, then:

We wrote to a CoW page.
Hence, we know that our probe fingerprint
deduplicated with website X’s fingerprint.

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

. Typed Array Data |
. (Tab Fingerprint) |

1 1
| TabFP.1 ||l TabFP.2
1
: RN !
TabFP.3 ||| TabFP.4 | Probe pages
T 1
. TabF.P... . TabF.P.8
1

-~ If the write to fingerprint X was slow, then:

We wrote to a CoW page.

Hence, we know that our probe fingerprint
deduplicated with website X’s fingerprint.
Hence, we know that website X is open.

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

. Typed Array Data |
. (Tab Fingerprint) |

1 1
i TabF.P.1 . TabF.P.2
: | !
1
Tab F.P. 3 TabF.P.4 ! Probe pages
T 1
| TabFP.. ||l TabFP.8
1

If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint
deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

If the write to fingerprint Y was fast, then:

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

. Typed Array Data |
. (Tab Fingerprint) |

Tab F.P. 1 Tab F.P. 2

| TabF.P.3 | TabFP.4 | Probe pages

Tab F.P. .. ! 1 TabF.P.8
1

If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint
deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.
If the write to fingerprint Y was fast, then:
- We wrote to a normal page.

33

Browser cross-tab scenario: Probing

Attacker Tab

SharedArrayBuffer
Timer

Content Process

. Typed Array Data |
. (Tab Fingerprint) |

Tab F.P. 1 Tab F.P. 2

| TabF.P.3 | TabFP.4 | Probe pages

Tab F.P. .. ! 1 TabF.P.8
1

If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint
deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

If the write to fingerprint Y was fast, then:
- We wrote to a normal page.

- We can only conclude that we're not sharing a
process with website Y.

33

Browser cross-tab scenario: Conclusion

34

Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

34

Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- l.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

34

Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- l.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.
- Such a code rewrite is non-trivial in practice.

34

Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- l.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

- Such a code rewrite is non-trivial in practice.
- In particular, Firefox didn’t mitigate this until November 2021, when it adopted full

site isolation.

34

Conclusion

35

Conclusion

- Deduplication-based side channel attacks are still feasible because it is non-trivial
to separate programs into separate security domains.

35

Conclusion

- Deduplication-based side channel attacks are still feasible because it is non-trivial
to separate programs into separate security domains.
- However, not all hope is lost! Promising mitigations exist, e.g.:

35

Conclusion

- Deduplication-based side channel attacks are still feasible because it is non-trivial
to separate programs into separate security domains.

- However, not all hope is lost! Promising mitigations exist, e.g.:
- Opt-in security domain-based deduplication, i.e., deduplication is off by default.

35

Conclusion

- Deduplication-based side channel attacks are still feasible because it is non-trivial
to separate programs into separate security domains.

- However, not all hope is lost! Promising mitigations exist, e.g.:

- Opt-in security domain-based deduplication, i.e., deduplication is off by default.
- VUsion, a mechanism that ensures the same behavior on all pages of a system.

35

Thank you!

36

