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Current defenses against memory deduplication side channel attacks are based on
separating trusted data from untrusted data.

However, in this work, we present two case studies that highlight one key flaw in this
defense: that it is difficult to implement correctly, and hence, insufficient.
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What is memory deduplication?

- A memory optimization technique used by OSes and hypervisors, which scans
and merges memory pages with the same content across processes and
virtualized guest OSes.

- By keeping only one shared copy of a page (e.g., for shared libraries, system files,
etc.), it reduces the total memory footprint of a system.
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How is memory deduplication vulnerable?

- However, deduplication is prone to timing side channel attacks, which stem from
the differences between memory write times:

- Attackers have abused this side channel to:
- Break ASLR,
- Break OpenSSH, GPG/APT update mechanisms, and
- Escape the browser’s sandbox
- Inresponse, vendors rolled out mitigations, e.g.:

- VMWare disabled inter-VM deduplication
- Windows disabled arbitrary inter-process deduplication (as we will see next)
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- Inresponse, Windows only deduplicates pages if either:
- (1) The pages contain safe data (e.g., all Os or 1s), or
- (2) The pages are from the same security domain (e.g., from the same process).

Process A Virtual Memory Process B Virtual Memory
Security Domain: “A” Security Domain: “B”

Security Domain: “A” I= Security Domain: “B”

4

Pages not deduplicated

- Intra-security domain-based deduplication (e.g., same-process) is enabled by defaulit.

- However, a process can explicitly disable it.
- That way, none of a process’s own pages would deduplicate with themselves.
- This would be useful for e.g., a program handles safe and unsafe data within the same process.
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Further mitigations in browsers

- Browsers can piggyback on the benefits of security domain-based deduplication
with their recent adoption of site isolation, i.e.:
- Each website open in the browser runs in its own process.

- As aresult, memory across different websites will not deduplicate, eliminating the deduplication
attack vector.
- However, adoption of strict site isolation has been slow.

- In particular, at the time of our research, Firefox had a partial implementation of site isolation.
- However, this was fixed in November 2021 (Firefox v94.0).

- Moreover, to thwart side channel attacks, browsers throttle the granularity of
native timers.

As a result, an attacker cannot accurately time write operations via e.g., performance.now().
However, later work bypasses this by finding alternative sources of fantastic timers.

E.g., by using a SharedArrayBuffer counter, one thread can increment a “timer” value in a loop,
while the other thread polls the “timer”.
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Client-server scenario: Overview

- In this scenario, the server is the victim and the client is the attacker.
- Setup:

- The server: stores untrusted data from the client alongside its own secret data.

- The client: (1) sends data to the server, and (2) times the server’s responses.

- This resembles e.g., a server such as a nginx running a key-value store, which
untrusted clients can connect to.
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1. Prime: The client sends data to the server, including:
a. Data that will be stored next to secret data, i.e., on the secret page
b. Multiple probe pages

2. The client waits for a deduplication pass to occur.
3. Probe: The client updates its probe pages and measures how long it takes for the

server to respond.
a. If it was slow, then the data was deduplicated, so: secret data = probe data.
b. Ifit was fast, then the data remained was not deduplicated, so: secret data # probe data.

4. The client repeats steps 1-3 to disclose secret data byte-by-byte.
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Client-server scenario: Conclusion

- We did make some assumptions (e.g., that we have an alignment probing
primitive), but this was meant to be a proof-of-concept.

- Some programs (e.g., a client-server scenario) necessarily handle both untrusted
data and trusted data.

- Hence, such programs are not easily amenable to security domain-based

deduplication mitigations, which require the separation of trusted and untrusted
data.
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- The browser has multiple tabs open
- The malicious webpage is trying to deduce which other tabs are open

- We exploit Firefox v83.0’s partial implementation of site isolation, i.e.:

- Firefox uses a maximum of 8 content processes, which run e.g., tabs.
- If a 9th tab is opened, then Firefox runs it in the same process as another tab.
- Since the attacker and victim share a process, their data can deduplicate.
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1.

w

The browser has at least 9 tabs open, where at least 1 tab is a malicious

webpage.
a. Each victim webpage has some memory fingerprint that is known by the attacker beforehand.
b. E.g., “google.com has this page in memory”, “facebook.com has this page in memory”, etc.

Because of Firefox’s limitation, one process runs both the malicious webpage’s
code and a victim webpage’s code.

The attacker replicates the fingerprints of possible victim webpages in its memory.
After a deduplication pass, the attacker writes to each of its fingerprints, timing
each operation via a SharedArrayBuffer counter.
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If the write to fingerprint X was slow, then:
- We wrote to a CoW page.
- Hence, we know that our probe fingerprint
deduplicated with website X’s fingerprint.
- Hence, we know that website X is open.

If the write to fingerprint Y was fast, then:
- We wrote to a normal page.

- We can only conclude that we're not sharing a
process with website Y.

33



Browser cross-tab scenario: Conclusion

34



Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

34



Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- l.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

34



Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- l.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.
- Such a code rewrite is non-trivial in practice.

34



Browser cross-tab scenario: Conclusion

This scenario highlights how difficult it is to conform to the model assumed by
security domain-based deduplication:

- l.e., where programs are rewritten such that processes that handle untrusted
data are separated from processes that handle trusted data.

- Such a code rewrite is non-trivial in practice.
- In particular, Firefox didn’t mitigate this until November 2021, when it adopted full

site isolation.
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- Deduplication-based side channel attacks are still feasible because it is non-trivial
to separate programs into separate security domains.

- However, not all hope is lost! Promising mitigations exist, e.g.:

- Opt-in security domain-based deduplication, i.e., deduplication is off by default.
- VUsion, a mechanism that ensures the same behavior on all pages of a system.
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Thank you!
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