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ABSTRACT

Memory deduplication, an OS memory optimization technique that

merges identical pages into a single Copy-on-Write (CoW) page,

has been shown to be susceptible to a variety of timing side channel

attacks, all of which stem from the differences between write times

to the CoW page and to the normal page. To mitigate this issue,

operating systems only merge pages from the same security domain

(e.g., from the same process); moreover, browsers can piggyback

on this defense with the recent adoption of site isolation. This was

all considered sufficient, because it thwarts existing attacks, which

have all relied upon separate domain (e.g., cross-process) scenarios.

In this paper, we examine the effectiveness of same-domain

memory deduplication as a mitigation by presenting two case stud-

ies that show that an attacker can still leverage the deduplication

side channel to leak secrets. Specifically, our case studies high-

light one key flaw: that it is non-trivial to separate programs into

separate security domains. In the first case study, we examine a

client-server scenarioÐa scenario that inherently requires a server

to read data from an untrusted clientÐand demonstrate that the

client can control the alignment of data in memory to disclose the

server’s secret data. In the second case study, we examine a recent

version of FirefoxÐa browser that has undergone massive efforts to

ensure that data from different origins are separated into different

domainsÐand demonstrate that nonetheless, a malicious webpage

can exploit the browser’s partial implementation of site isolation to

leak secret data across tabs. We conclude that same-domain mem-

ory deduplication as a defense is difficult to implement correctly,

and hence, is insufficient.
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• Security and privacy→Operating systems security; Browser

security.
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1 INTRODUCTION

Memory deduplication is a memory optimization technique used by

OSes and hypervisors [1, 2, 5] to scan andmergememory pageswith

the same content across processes and virtualized guest OSes. By

keeping only one shared copy of a page, it reduces the total memory

footprint of a running system, which is essential as many processes

and guest OSes share memory pages with the same content (e.g.,

shared libraries, system files).

Due to the nature of memory deduplication, however, and the

slow write operation on a deduplicated page, this mechanism in-

herently creates a timing side channel, which attackers [4, 22, 25]

leveraged in the past to perform a variety of deduplication-based

side channel attacks. To mitigate this, vendors either disabled dedu-

plication entirely [32] (incurring a substantial performance penalty),

or developed solutions to try to limit an attacker’s capabilities. One

solution in particularÐto deduplicate pages based on a process’s

security context [15, 28, 35]Ðwas adopted by Windows in the form

of security domain-based memory deduplication [11]. Moreover,

browser vendors both adopted site isolation, to piggyback on OS-

based mitigations, and throttled native JavaScript timers, to hinder

the ability to precisely time deduplication passes in the browser.

Concurrent work [27] showcases how these mitigations can be

bypassed, however, the focus of their work is on a specific type of

attacker model (i.e., a remote attacker), whereas the focus of our

work is on the mitigations themselves, while addressing the variety

of attacker models that are possible.

In this paper, we present a detailed analysis of the applied mitiga-

tions and demonstrate that same-domain memory deduplication is

insufficient because it assumes that programs judiciously separate

trusted data and untrusted data into separate pages. However, we

demonstrate that in practiceÐoutside a few exceptions (e.g., pro-

grams that sanitize all untrusted input, browsers that implement

full site isolation)Ðthis assumption does not hold. In particular,

we first present how in a client-server environment, a malicious

client can exploit the server’s single security domain by using an

alignment probing primitive to perform byte-by-byte disclosure of

the server’s secret data by timing its responses. Furthermore, we

present how, at the time of our research, Firefox’s partial imple-

mentation of site isolation (which has since been fixed in Firefox

https://doi.org/10.1145/3517208.3523754
https://doi.org/10.1145/3517208.3523754
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v94.0 [18]) could be exploited by a malicious webpage to achieve

co-residency of separate tabs within a single security domain and

that this, in combination with a custom timer, could be used to leak

data across tabs.

Contributions.We make the following contributions:

• We present a detailed analysis of the mitigations deployed in

recent OSes and browsers to combat memory deduplication

side channel attacks and discuss how an attacker can still

bypass them.

• We present two case studies1 that bypass existing defensesÐ

i.e., in (1) a client-server scenario and (2) a cross-tab browser

scenarioÐhighlighting the practical difficulty in adopting

same-domain memory deduplication as a defense.

• We discuss other potential attack scenarios and potential

mitigation strategies.

2 BACKGROUND

In this section we present the concept ofmemory deduplication, and

discuss how deduplication creates a timing side channel. Further,

we discuss mitigations applied on newer versions of Windows and

in modern browsers, to limit an attacker’s capabilities in launching

deduplication-based side channel attacks.

2.1 Memory Deduplication

The OS or the hypervisor scans the physical memory, usually in

predetermined time intervals, looks for pages with identical content,

and remaps such pages to point to one of the same-content pages,

making the rest of the pages free and available to the system. The

deduplication mechanism updates the Page Table Entries (PTEs) of

the owning processes to point to the shared copy of the page, and

marks it as read-only to support CoW semantics. When a process

that shares a deduplicated page tries to write to the page, a CoW

page fault occurs at which point the system will create a private

copy of the page andmap it to the corresponding PTE of the faulting

process. This CoW page fault leads to significantly slower write

operations than a normal write to a non-deduplicated page, creating

a timing side channel which an attacker can exploit, by crafting

pages with the same content, wait for deduplication to merge same-

content pages, and then write to one of the crafted pages, to detect

if certain pages were already present in the system.

As illustrated in the past, this timing side channel provided

attackers with the ability to fingerprint applications and web-

sites [10, 23, 29ś31] in hypervisors and in the context of a cross-VM

sandboxed environment [7], perform information disclosure attacks

to leak the address space layout of co-resident VMs in the cloud [3]

and defeat Address Space Layout Randomization (ASLR), but also

establish covert channels [33, 34].

More recent works, however, showcase that the deduplication

side channel is quite powerful and leverage it in more complex cases.

Flip Feng Shui (FFS) attacks [22, 25] use memory deduplication as

a massaging primitive, and in combination with the Rowhammer

vulnerability [8] (i.e., the ability to induce bit flips in memory pages

by reading constantly from the physical memory), to corrupt the

integrity of data stored in vulnerable to bit flips locations. The

1The implementations of our case studies are available at https://github.com/vusec/
dedup-est-returns.

Dedup Est Machina [4] attacks describe how an attacker can use

certain primitives (e.g., alignment probing, birthday heap spray),

to leak code and heap pointers using JavaScript within Microsoft

Edge, and how combining these two primitives with Rowhammer,

an attacker can escape the browser’s sandbox, and perform system-

wide exploitation, by breaking ASLR from within the browser using

JavaScript. Finally, concurrent work [27] show how a remote at-

tacker can time HTTP/1 and HTTP/2 requests to a remote server

and disclose memory contents, fingerprint system libraries’ ver-

sions, leak database records, and defeat the KASLR of the virtual

remote host.

2.2 Windows Security Domains

To limit an attacker’s capabilities in launching such advanced

deduplication-based attacks, Microsoft introduced on newer ver-

sions of Windows (v.1903 onwards) security domains [12], where

processes can choose to disable deduplication of their memory

pages, via the PROCESS _MITIGATION_SIDE_CHANNEL_ISOLATION_

POLICY structure, using the DisablePageCombine flag, and re-

quest the creation of a unique security domain with the

IsolateSecurity Domain flag. This way a process can disable

deduplication completely, even internally, except for safe pages

(pages filled with 1’s or 0’s), whose content will not change during

their lifetime. Unless a process explicitly declares the aforemen-

tioned, memory deduplication occurs on pages of processes within

the same security domain. Two processes are eligible to belong in

the same security domain if both processes effectively have full con-

trol over each other [14], and neither process explicitly requested its

own security domain. Processes automatically inherit the security

domain of their creator, unless the new process runs with a different

process token, in which case this process will get its own security

domain. A user-mode service periodically scans for processes that

may be in a state where their security domains could be combined,

and if compatible, combines them to create more deduplication

opportunities.

By not residing in the same security domain, malicious processes

can no longer deduplicate their pageswith pages of victim processes,

thus limiting an attacker’s capabilities to perform cross-process

deduplication side channel attacks.

2.3 Browser Mitigations

Browser vendors introduced several mitigations to disable browser-

based deduplication attacks. The most notable one was the throt-

tling of JavaScript-based timers such as performance.now() [20].

To offer general protection, not only against deduplication side

channel attacks, but also against other browser-based timing side

channel and fingerprinting attacks, such as Spectre, browsers now

round the returned value of performance.now() by some amount

(typically to 1 millisecond increments), to be less predictable and re-

duce its accuracy. Firefox enables this by default, and can be config-

ured to throttle the precision of native timers to either 1msÐwhich

is the defaultÐor 100ms. JavaScript code can utilize high preci-

sion timers only if the web documents are cross-origin isolated

using the COEP [16] and COOP [17] policies. By requiring these

headers, attackers cannot utilize other high precision timers (e.g.,

SharedArrayBuffer objects [21]), as attacker-controlled frames

https://github.com/vusec/dedup-est-returns
https://github.com/vusec/dedup-est-returns
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(b) Incremental disclosure of secret data.

Figure 1: Alignment Probing primitive utilized to incremen-

tally disclose a secret by manipulating the known data size.

(e.g., iframe) will not satisfy the required policies with victim pages.

Finally, modern browsers enforce a per-process site isolation pol-

icy [13, 24] where the browser assigns each tab its own process.

Each process receives its own security domain which as discussed

previously disables inter-process memory deduplication. Firefox

on the other hand, at the time of our research and prior to ver-

sion 94.0 [18]Ðwhich implemented strict site isolation to mitigate

against side channel attacksÐused N content processes [19], where

N tabs receive their own process, and hence unique security domain.

When the browser spawns a N+1 tab it results in sharing the same

content process with another tab.

The adoption of these mitigations severely cripples browser-

based deduplication attacks. Throttling the precision of timers dis-

ables attackers from accurately measuring deduplication passes and

detecting when an attacker-controlled page is merged with a vic-

tim page. Further, per-process site isolation prevents inter-process

memory deduplication, thus an attacker-controlled tab cannot dedu-

plicate pages with a victim tab as their security domains will be

different.

2.4 Attacker Primitives

Alignment Probing. We employ the same alignment probing

primitive used in the Dedup EstMachina attacks [4], which provides

an attacker with the ability to control the alignment of secret data

based on the provided input. As such an attacker can incrementally

leak secret data over several deduplication passes by manipulating

the input provided to shift the secret data up and down in memory,

and consequently in or out of the memory page. As a result, by

pushing most of the secret (N-1 bytes) out of the memory page

(Fig. 1a), the attacker can use deduplication to leak the first byte of

the secret. The attacker repeats the process by providing a smaller

(N-2 bytes) input, and including the first leaked byte of the secret

in order to deduce the next byte (Fig. 1b), which allows the attacker

to incrementally leak the whole secret over several deduplication

passes.

SharedArrayBuffer timer. As mentioned previously, modern

browsers severely crippled the precision (from 5𝜇𝑠 to 20𝜇𝑠) of native

JavaScript timers (e.g., performance.now()), which prevented an

attacker from accurately detecting deduplication passes. To mea-

sure accurately the write operation and detect the deduplication

signal, an attacker can craft a custom JavaScript timer utilizing the

SharedArrayBuffer JavaScript object.

SharedArrayBuffer allows two threads to share state. The first

thread operates as the timer and the second thread reads the time.

The timer thread utilizes Atomics to perform increment operations,

and the reader thread can read the time at any point without the risk

of a race condition. Using a SharedArrayBuffer timer, an attacker

can still measure the time needed for an operation to complete. As

such an attacker can poll the timer, perform a write operation and

then poll the timer again in order to find out how long it takes

to perform a write operation on a page. When the attacker sees

a higher number of increments, it means that the deduplication

thread combined the attacker-controlled page with a victim page.

3 THREAT MODELS

In this section we present our threat models including the attacker’s

capabilities with the purpose of leveraging the deduplication side

channel to extract sensitive data from a server application and

from a user tab in the browser. For both threat models we assume

that page combining within the same security domain is enabled

(enabled by default on Windows).

We emphasize that the following use cases represent two syn-

thetic scenarios and represent a proof-of-concept in an attempt to

showcase that same domain memory deduplication is difficult to im-

plement correctly as it is perfectly normalÐand often requiredÐfor

processes to share memory and hence the same security domain.

Even though we focus on the following use cases, these two

threat models represent classes of attack scenarios. In the browser

environment, an attacker can leverage the ability to utilize a custom

timer, and also leverage the ability to reside in the same content pro-

cess as a victim tab, to perform fingerprinting attacks and retrieve

sensitive information of the victim. In the client-server environ-

ment, server applications (e.g., nginx) that use in-memory key-value

stores for storing arbitrary data (e.g., memcached), and that can be

induced to create a desired page in their memory by a client appli-

cation issuing targeted requests (e.g., API calls, etc.) are a potential

target of deduplication side channel attacks.

Windows Native Client-Server Environment. For this type of

attack we assume a Windows native cross-process environment

running on Windows 10 x64 v2004, where two local processes (a

client and a server implemented in C++) communicate via socket

connections utilizing the WinSock2 library. The attacker has full

control over the client application, and is able to perform multiple

requests to the server application. The purpose of the attacker is to

time the requests to detect deduplication passes and incrementally

leak a server’s secret using an alignment probing primitive.

Browser Cross-Tab Environment. For this type of attack we as-

sume a browser environment where a capable attacker can execute

JavaScript code in the victim’s browser, by either performing so-

cial engineering attacks, so the victim visits an attacker-controlled
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website or by compromising a legitimate website. The attacker

via the malicious website creates arbitrary memory pages con-

taining synthetic fingerprints using TypedArray objects which are

large enough to be page-aligned. We assume the victim visits legit-

imate websites over at least 8 tabs which load the corresponding

fingerprints in memory. The purpose of the attacker is to detect

deduplication passes by measuring the write time to the attacker-

controlled pages, by utilizing a custom timer implemented using

a SharedArrayBuffer, and hence detect which victim fingerprint

was deduplicated with an attacker-controlled page. We further as-

sume that the victim visits the malicious website for at least 15

minutes so the deduplication thread combines a victim fingerprint

with an attacker-controlled page, that the COOP and COEP policies

are enabled so that the SharedArrayBuffer custom timer works,

and that a Firefox build prior to Firefox v94.0 is utilized which at

the time of our research did not implement strict site isolation.

4 ATTACK VECTOR VALIDATION

As discussed in Section 2.1, deduplication inherently creates a tim-

ing side channel. This occurs because writing to deduplicated mem-

ory is quite slower than writing to normal memory. On Windows

systems memory deduplication occurs every 15 minutes via a ker-

nel thread which scans the memory for pages with identical con-

tent [6], given that the pages are eligible for merging based on their

processes’ security domains and their permissions. In this section

we discuss native inter- and intra-process deduplication, and how

deduplication-based side channel attacks are still feasible in the

browser.

4.1 Same Security Domain Deduplication

With the introduction of security domains, the first step was to

confirm if intra-process deduplication of arbitrary memory pages is

still possible and if the deduplication signal is powerful enough to

detect deduplication passes. To illustrate this over a nativeWindows

process, we allocate a large number of 4KB pair-wise memory pages

to be readable and writable (PAGE_READWRITE), and also be able to

be deduplicated (PAGE_WRITE COMBINE). We fill them with arbitrary

content (0x41, 0x42, etc.) and measure how long it takes to write

to a page, to create a baseline metric.

The average time needed for writing to a normal page in this

scenario was 6.3𝜇𝑠 . After having this baseline metric, the process

waits for a deduplication pass and then performs a write operation

to the allocated memory pages to detect if there is a deduplication

signal and if deduplication occurs on pages with arbitrary content.

The average time needed for writing to a deduplicated page was

61.02𝜇𝑠 , which is significantly slower than a normal write opera-

tion. Figure 2 shows that over a sample size of 210 measurements,

approximately 80% of the normal write operations took 6𝜇𝑠 . In

contrast, the write operation on deduplicated pages takes more

than 40𝜇𝑠 , showing that intra-process deduplication of arbitrary

memory is still possible, and an attacker can successfully measure

and detect slow write operations.

As stated in Section 2.2, processes with sufficient privileges over

each other, can belong in the same security domain, which enables

inter-process deduplication. Allocating arbitrary memory pages in

the memory of a victim process and utilizing an attacker-controlled

process to create and inject the pair memory pages in the victim

process allows for the deduplication of attacker and victim pages.

The average time needed for the attacker process to write normally

to the allocated pages was 13.56𝜇𝑠 . After a deduplication pass the

attacker process writes to the pair pages to determine if the dedu-

plication thread merged any pages. The average time needed for

the write operation to complete over attacker-controlled arbitrary

pages was 67.56𝜇𝑠 , indicating that inter-process deduplication over

the same security domain is feasible. Figure 2 shows that over 50

measurements 98% of normal write operations, in our inter-process

scenario, took less than 30𝜇𝑠 to complete. In contrast, 54% of the

write operations on deduplicated pages took more than 80𝜇𝑠 to

complete.

Same security domain memory deduplication, however, will pre-

vent us from deduplicating memory between an attacker-controlled

client process, and a target server process in a different security

domain. But it is perfectly normalÐand often requiredÐfor pro-

cesses from one security domain to read data into their address

space from another (untrusted) security domain. This way, we can

cause deduplication to happen within the victim’s address space,

by using attacker supplied data. By timing subsequent interactions

with the victim process we can try to determine whether any CoWs

occur on the server.

4.2 Browser Same-Tab Deduplication

An attacker can still create arbitrary memory pages via JavaScript,

that are large enough to be page-aligned with TypedArray objects

(discussed in Section 5.2.1). Further, utilizing custom timers [9, 26]

or a SharedArrayBuffer, an attacker can create an accurate

enough timer to measure write operations on the TypedArray

objects and detect deduplication successfully. To test this in the

browser, we create pairs of pages and write to pages that belong to

different pairs every 10 seconds. We poll the timer (i.e., the reader

thread) before performing the write operation, and again after con-

cluding the write operation, to find out how many increments the

timer thread performed.

The average time needed for a write operation to complete on

normal pages is 333.82 "ticks", while writing to a combined page

takes on average 5413.98 "ticks". As such, detecting deduplication

in the browser utilizing a custom timer is still possible. Over a

sample size of 139 measurements (Fig. 3), approximately 94% of the

normal write operations took less than 1000 "ticks" to complete. In

contrast, the write operation on deduplicated pages takes more than

1400 "ticks" to complete, and as such an attacker can successfully

measure and detect slow write operations in the browser.

5 CASE STUDIES

In this section we present our two case studies where we showcase

how deduplication is still feasible on Windows 10 native processes

and in the browser in a cross-tab environment.

5.1 Client-Server Use Case

Knowing that the deduplication signal is quite powerful across

processes (Section 4.1), we utilize this knowledge in our client-

server attack. In a client-server environment, the server allocates

memory and the client times how long it takes for the server to
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on normal and deduplicated pages.

respond when writing to the allocated pages. Writing to a server’s

normal page and waiting for the server to respond is significantly

faster than writing to a deduplicated server page and waiting for

the server’s response. This way, security domains do not play a

part in limiting the deduplication side channel, since the attacker

is not bound by deduplicating client and server memory pages.

5.1.1 Exploitation. For our client-server use case we utilize two

local native processes which communicate via sockets. We assume

that the client is attacker-controlled and can send multiple requests

to the server at any given time. The server receives the client re-

quests and allocates memory based on the attacker-provided input,

whereby it stores the client input (hereby referred to as known

data) at a page-aligned location next to secret data (Fig. 1a).

Knowing that the server stores the provided data next to secret

data and that they are page-aligned, the attacker sends an initial

request of 4095 known bytes. Further, due to the weak alignment

properties of the server, the attacker is employed with the align-

ment probing primitive described in Section 2.4, which will result

in the server creating the "secret" page containing the 4095 attacker-

provided bytes and next to it will be the secret data. Due to the

weak alignment properties, only the first byte of the secret will

reside in the same page with the known data, which reduces the

entropy of the secret, as the guesses required to leak a single byte

are exponentially less than leaking the whole secret at the same

time (Fig. 1a). The attacker sends multiple requests to the server

containing the same 4095 bytes and 1 guessed byte at the end, spray-

ing the memory of the server with "probe" pages. In this case, the

server-allocated memory will contain only attacker-provided input.

The attacker provides inputs to the server every 10 seconds in order

to write to the "probe" pages, and measures how long it takes for the

server to respond. When the response takes longer than a moving

average, the attacker deduces that the deduplication mechanism

combined a "probe" page with the "secret" page. The client then

repeats the process by sending 1 less byte in the initial and probe

requests and including in the known data the first leaked byte of

the secret. As such the attacker performs byte-by-byte disclosure of

the secret data over several deduplication passes depending on the

length of the secret data (Fig. 1b). Assuming that an attacker wants

to leak a 15-byte secret utilizing a 52-character alphabet, it will take

15 deduplication passes, 225 minutes, and 217MB of memory.

The average time needed for writing to a normal page, and for the

server to respond was 96.73𝜇𝑠 . When a deduplication pass occurs

on the server, the time needed to perform the write operation and

for the server to respond was 239.86𝜇𝑠 , which is significantly slower.

Figure 3 shows that in the client-server scenario, over a sample size

of 41measurements all normal write operations took less than 170𝜇𝑠 .

In contrast, 85% of the write operations on deduplicated pages took

more than 205𝜇𝑠 , allowing an attacker to detect deduplication by

timing the server’s responses.

Figure 4 shows the time needed for the write operations to com-

plete on normal and deduplicated pages over the 6 deduplication

rounds to fully disclose the secret data. Figure 1b illustrates the

incremental disclosure of a 6-byte secret by utilizing the alignment

probing primitive and the deduplication timing side channel to

detect when deduplication occurs, combining a probe page with

the secret page.

5.1.2 Limitations. A possible factor that could impair this attack

is the server application being under load and hence affect the pre-

cision of measuring deduplication passes. A possible workaround

to this is utilizing signal amplification techniques, whereby instead

of measuring the time needed for a write operation to complete

(i.e., the time needed for the server to respond) for 1 page, we are

measuring the time needed for a write operation to complete for

e.g., 100 pages so if several pages are deduplicated the deduplication

signal is amplified.

5.2 Browser Cross-Tab Use Case

Deduplication-based attacks are still possible in a browser environ-

ment as discussed in Section 4.2. This only illustrates, however, that

deduplication is feasible within the same browser tab which does

not have a significant impact. Further, as discussed in Section 2.3,

cross-tab deduplication-based attacks should not be possible, due to

browsers enforcing site isolation where each tab resides in its own

process, thus disabling deduplication of memory of two different

tabs as they belong in different security domains.
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Figure 4: Write time on normal pages and deduplicated

pages in a client-server scenario over 6 deduplication passes.

Firefox, however, at the time of our research did not yet enforce

strict site isolation, and instead each tab resided in a Firefox content

process. The maximum number of content processes available in

Firefox was 8 and as such having 9 tabs open resulted in two tabs

sharing the same content process, thus enabling deduplication,

as the tabs share the same address space. This way an attacker-

controlled tab in the victim’s browser could share the same process

with a victim tab, whereby the attacker could detect and force

deduplication of attacker-controlled and victim pages.

5.2.1 JavaScript Deduplication. To successfully detect memory

deduplication over JavaScript, an attacker must have control over

how known data are stored in memory, and have an accurate timer

to measure the write operations to detect deduplication passes. To

satisfy the first requirement, an attacker can utilize TypedArray ob-

jects (e.g., Uint8Array), which when large enough are page-aligned

in memory. This allows for controlling the content of each byte

within the memory page, which subsequently provides an attacker

with the ability of creating arbitrary memory pages. To satisfy the

second requirement, we utilize a custom SharedArrayBuffer timer

as described in Section 2.4.

5.2.2 Exploitation. We utilize one attacker tab and 8 victim tabs.

We assume that a victim visits an attacker-controlled website and

all 9 tabs remain open throughout the attack.

Firefox uses by default 8 content processes whereby each open

tab runs its web content in one of these content processes. Only the

first 8 open tabs, however, will reside in their own content process

enforcing memory isolation. When a new tab opens, Firefox will ar-

bitrarily assign it to one of the 8 content processes, which results in

sharing memory with one of the 8 open tabs. As such, the attacker-

controlled tab will reside in the same content process with a victim

tab which also enables the deduplication of attacker-controlled

memory and victim memory. By exploiting this limitation in con-

tent processes, it was possible to bypass the site isolation mitigation

and force deduplication of attacker and victim memory. To bypass

the timer limitation, we utilize a SharedArrayBuffer timer as dis-

cussed in Section 5.2.1. This way it was possible to create an accurate

baseline for how long a write operation to a TypedArray object

takes, and infer when deduplication occurs between an attacker-

controlled and a victim page. In this use case we load 8 victim

tabs whereby we encode multiple fingerprints, which are large

enough to be page-aligned, in secret pages using Uint8Array ob-

jects. The attacker-controlled tab creates several probe pages using

Uint8Array objects containing such fingerprints and waits in order

to detect a deduplication pass. By encoding multiple fingerprints in

secret pages and encoding fingerprints in probe pages, inevitably

after a deduplication pass one of the secret and probe pages will

be deduplicated, depending on which content process is shared

between the victim and the attacker tabs. This way it was possible

to leak a tab’s fingerprint using the deduplication side channel in a

browser cross-tab environment.

Due to the fact that the tabs’ fingerprints are known, it was pos-

sible to leak a fingerprint in a single deduplication pass. By writing

to all attacker-controlled pages which contain the fingerprints and

looking at the time needed for a write operation to complete to

detect which is significantly slower, we can infer which victim tab

resides in the same content process as the attacker tab, and also

which probe page was deduplicated with the victim’s secret page

which contains the tab’s fingerprint.

6 DISCUSSION

In this section, we first discuss other potential attack scenarios that

may bypass same-domain memory deduplication, address concur-

rent work, and discuss potential mitigation strategies.

Other attack scenarios. One possible high-value target of a mem-

ory deduplication side channel attack is the Window Registry, be-

cause it employs a single security domain while storing keys from

a variety of security contexts (i.e., possibly from an attacker). How-

ever, due to restrictions in data mapping and accessing, and the

fact that new Registry entries are not necessarily page-aligned and

are stored in arbitrary locations in memory, deduplication-based at-

tacks over Registry entries were not feasible. Further, arbitrary pair-

wise memory pages of processes that belong to different security

domains, presented similar timings in write operations (11.45𝜇𝑠),

meaning that across deduplication passes, the deduplication kernel

thread did not combine them. Finally, during our research, related

to our browser use case, we tested other browsers (e.g., Google

Chrome and Microsoft Edge) to confirm if cross-tab deduplication

is feasible in other browsers other than Firefox. These browsers,

however, enabled by default strict site isolationÐwhich Firefox im-

plemented recentlyÐthus disabling cross-tab deduplication, so only

deduplication within the same tab is possible.

Concurrentwork.As discussed in Section 2, concurrent work [27]

focuses on how a remote attacker can time HTTP/1 and HTTP/2

requests to a remote server and disclose memory contents, finger-

print system libraries’ versions, leak database records, and defeat

the KASLR of the virtual remote host. Our work on the other hand

focuses on the effectiveness of the deployed mitigations such as

security domains and site isolation, and how attackers can bypass

them to detect deduplication across processeswith different security

domains, and in the browser how by building a custom JavaScript
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timer, attackers can still detect deduplication and perform finger-

printing attacks in a cross-tab scenario, thus addressing a variety

of attacker models that are possible.

Mitigation Strategies. Possible mitigation strategies may include

disabling deduplication completely, however, this nullifies all per-

formance improvements deduplication offers. On the other hand,

defense mechanisms such as VUsion [22] employ the same behavior

on all pages of a system by removing all access permissions from

pages that are considered for deduplication, which will always re-

sult in a copy-on-access page fault, thus disabling an attacker from

distinguishing deduplication passes. Further, by taking advantage

of the fact that deduplication is a slow background process and

works mostly on the idle pages of a system, VUsion introduces a

2.7% performance overhead, making it a viable defense mechanism

against the deduplication timing side channel.

7 CONCLUSIONS

In this paper we have shown that, even with all new system and

browser mitigations applied, an attacker can still find ways to abuse

the deduplication side channel and leak secrets in native Windows

environments and in the browser. By utilizing the intra-process

deduplication in a client-server environment, security domains do

not play a part in mitigating deduplication-based attacks, as the

attacker only needs to time the server’s responses to detect dedu-

plication. In the browser we have shown that a custom JavaScript

timer still detects deduplication passes, defeating the timer throt-

tling mitigation. Further, due to the fact that Firefox did not enforce

strict site isolation, cross-tab deduplication was still possible, given

that a large number of tabs are open in the victim’s browser. As

such, while the mitigation strategies discussed in Section 2 are

quite effective in limiting an attacker’s capabilities and attack sur-

face, they are not completely effective against deduplication-based

attacks as it is inherently difficult to implement same domain mem-

ory deduplication correctly, due to the fact that processes are often

requiredÐand is perfectly normalÐto share memory and hence the

same security domain.

Disclosure.We disclosed our findings to Microsoft on Jan 28, 2022.

Firefox mitigated the issue we discovered prior to our paper sub-

mission.
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